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ABSTRACT
In this paper, a novel statistical model for image recognition
based on separable lattice 2-D HMMs (SL2D-HMMs) is pro-
posed. Although SL2D-HMMs can model invariance to size
and location deformation, its modeling accuracy is still insuf-
ficient because of the following two assumptions: i) the statis-
tics of each state are constant and ii) the state output proba-
bilities are conditionally independent. In this paper, SL2D-
HMMs are reformulated as a trajectory model that can capture
dependencies between adjacent observations. The effective-
ness of the proposed model was demonstrated in face recog-
nition and image alignment experiments.

Index Terms— image recognition, hidden Markov mod-
els, separable lattice 2-D HMMs, trajectory HMMs.

1. INTRODUCTION

With the recent development of image recognition techniques,
image recognition systems based on statistical approaches
such as eigenface methods [1] and subspace methods [2]
have become popular in many applications. In these im-
age recognition systems, heuristic normalization techniques
included in the pre-process part of the classification have
been applied. Although high recognition performance can
be obtained by using these heuristic techniques, it is still re-
quired for human to develop such techniques for each task
by using task dependent information. Furthermore, in image
recognition, the final objective is not to accurately normalize
images for humans perception but to achieve a better recog-
nition performance. Therefore, it is natural to use the same
criterion for both training classifiers and normalization. This
means that the normalization process should be integrated
into classifiers.

Hidden Markov model (HMM) based techniques are such
statistical approaches and have been proposed recently to re-
duce the influence of geometric variations [3–7]. Geometric
matching between input images and model parameters is rep-
resented by discrete hidden variables, and the normalization
process is included in calculating probabilities. For another
HMM based approach, separable lattice 2-D HMMs (SL2D-
HMMs) were proposed [8] to reduce computational complex-
ity while retaining outstanding properties that model multi-
dimensional data. SL2D-HMMs can perform elastic match-
ing both horizontally and vertically, which makes it possible
to model not only invariance to the size and location of an

object but also nonlinear warping in all dimensions. Never-
theless, due to the composite structure of hidden variables,
SL2D-HMMs have the same constraints as 1-D HMMs [9]
in that (i) the statistics of each state do not change dynami-
cally and (ii) the output probability of an observation vector
depends only on the current state, not on any other states nor
observations. To capture the dependencies and improve the
recognition performance, it was reported that using dynamic
features (e.g., 1st and 2nd order delta coefficients) [10] can be
effective [11, 12]. However, the static and dynamic features
are assumed to be independent variables and these relation-
ships are ignored even though the relationships between the
static and dynamic features are essentially deterministic.

In previous work [13], trajectory HMMs were proposed
and successfully applied to speech recognition and speech
synthesis. The standard HMM is reformulated by impos-
ing the explicit relationship between static and dynamic fea-
tures, in order that the constraint of HMMs such as the con-
ditional independence and the constant statistics in each state
can be relaxed. In this paper, we propose a novel generative
model that reformulate SL2D-HMMs as a trajectory model,
referred to as separable lattice trajectory 2-D HMMs (SLT2D-
HMMs). The proposed model can overcome the shortcom-
ings of separable lattice HMMs and capture the dependencies
of adjacent observations. Consequently, the modeling ability
can be significantly improved.

The rest of the paper is organized as follows. In section 2,
SL2D-HMMs are explained briefly. In section 3, the structure
of the proposed model is defined. In Section 4, we derive
the training algorithm for the proposed model. In Section 5,
we describe face recognition experiments on the XM2VTS
database [14] and finally conclude in Section 6.

2. SEPARABLE LATTICE 2-D HMMS

Separable lattice 2-D hidden Markov models [8] are defined
for modeling two-dimensional data. The observations of
two-dimensional data, e.g., pixel values of an image, are
assumed to be given on a two-dimensional lattice:

O = {Ot|t = (t(1), t(2)) ∈ T }, (1)

where t denotes the coordinates of the lattice in two dimen-
sional space T and t(m) = 1, . . . , T (m) is the coordinate of
the m-th dimension. The observation Ot is emitted from the
state indicated by the hidden variable St ∈ K. The hidden
variables St ∈ K can take one of K = K(1)K(2) states,
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which are assumed to be arranged on an two-dimensional
state lattice K = {(1, 1), (1, 2), . . . , (K(1),K(2))}. In other
words, a set of hidden variables, {St|t ∈ T }, represents a
segmentation of observations into the K states, and each state
corresponds to a segmented region in which the observation
vectors are assumed to be generated from the same distri-
bution. Since the observation Ot is dependent only on the
state St as in ordinary HMMs, dependencies among hidden
variables determine the properties and the modeling ability
of two-dimensional HMMs. In SL2D-HMMs, to reduce the
number of possible state sequences, the hidden variables are
constrained to be composed of two Markov chains:

S = {S(1),S(2)}, (2)

S(m) = {S(m)
1 , . . . , S

(m)

t(m) , . . . , S
(m)

T (m)}, (3)

where S(m) is the Markov chain along with the m-th coordi-
nate and S

(m)

t(m) ∈ {1, . . . ,K(m)}. In the separable lattice 2-D
HMMs, the composite structure of hidden variables is defined
as the product of hidden state sequences: St = (S(1)

t(1)
, S

(2)

t(2)
).

This means that the segmented regions of observations are
constrained to be rectangles and this allows an observation
lattice to be elastic in both vertical and horizontal directions.

The joint probability of observation vectors O and hidden
variables S can be written as

P (O,S | Λ) = P (O | S, Λ)
∏

m=1,2

P (S(m) | Λ), (4)

where Λ is a set of model parameters.

3. SEPARABLE LATTICE TRAJECTORY 2-D HMMS

In the previous section, we described the structure of SL2D-
HMMs, where the hidden variables are composed of two in-
dependent 1-D Markov chains. Therefore, similar to the 1-D
HMMs, the following two limitations are imposed on SL2D-
HMMs [9]:

1. The statistics of each state do not change dynamically.

2. The output probability of the observation is condi-
tionally independent, given the horizontal and vertical
states.

To overcome these shortcomings, augmenting the dimension-
ality of static feature vectors (e.g., pixel values) by appending
their dynamic feature vectors (e.g., delta and delta-delta co-
efficients) [10] to capture dependencies between adjacent ob-
servations can enhance the performance of the HMM-based
speech recognizers [15]. Generally, dynamic features are cal-
culated as regression coefficients from their neighboring static
features. Therefore, the relationship between static and dy-
namic features is deterministic. However, this relationship is
ignored, and static and dynamic features are modeled as in-
dependent statistical variables in standard HMMs. In the next
section, the proposed model is derived in order to avoid this
problem.

3.1. Reformulation as a trajectory model

In this paper, the observation vector Ot is assumed to consist
of the M -dimensional static feature vector

Ct = [Ct,1, Ct,2, . . . , Ct,M ]>, (5)

and horizontal/vertical dynamic feature vectors 1

∆(H)Ct = [∆(H)Ct,1, ∆(H)Ct,2, . . . ,∆(H)Ct,M ]>, (6)

∆(V )Ct = [∆(V )Ct,1, ∆(V )Ct,2, . . . ,∆(V )Ct,M ]>, (7)

that is

Ot =
[
∆(S)C>

t , ∆(H)C>
t , ∆(V )C>

t

]>
, (8)

where ∆(S)Ct = Ct. Generally, these dynamic features are
calculated as regression coefficients from their neighboring
static features:

∆(d)Ct =
L

(d)
+∑

τ=−L
(d)
−

w(d)(τ)Ct(d,τ) , d = H, V, (9)

where t(H,τ) = (t(1) + τ, t(2)) and t(V,τ) = (t(1), t(2) + τ).
The observation vectors and static feature vectors on the 2-D
lattice can be rewritten in MT (1)T (2) size vector forms as

O =
[
O>

(1,1),O
>
(1,2), . . . ,O

>
(T (1),T (2))

]>
, (10)

C =
[
C>

(1,1),C
>
(1,2), . . . ,C

>
(T (1),T (2))

]>
. (11)

Then, a relationship between O and C can be arranged in a
matrix form:

O = WC, (12)

where W is a 3MT (1)T (2) × MT (1)T (2) window matrix to
append dynamic features given by

W = [w(1,1), . . . ,w(T (1),T (2))]
> ⊗ IM×M , (13)

wt = [w(S)
t , w

(H)
t , w

(V )
t ]>. (14)

The output probability P (O | S,Λ) is given by

P (O | S,Λ) = N (O | µS ,ΣS) =
∏

t

N (Ot | µSt
,ΣSt

),

(15)
where N (· | µ,Σ) denotes the Gaussian distribution with a
mean vector µ and a covariance matrix Σ, and µS and ΣS are
the “image level” mean vector and covariance matrix given
state sequences S, respectively, and they are constructed by
concatenating the “state level” mean vectors and covariance
matrices in accordance with state sequences S:

µS =
[
µ>

S(1,1)
, µ>

S(1,2)
, . . .µ>

S
(T (1),T (2))

]>

, (16)

ΣS = diag
[
ΣS(1,1)

,ΣS(1,2)
, . . .ΣS

(T (1),T (2))

]
.(17)

1 Using higher-order dynamic features is straightforward. Moreover, other
dynamic features in other directions, e.g., diagonal dynamic features can be
applied.
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However, Eq. (15) becomes an invalid probabilistic distribu-
tion over static feature vectors because the integral of Eq. (15)
over C is not equal to 1. To yield a valid probability distribu-
tion over C, Eq. (15) can be re-normalized as the probability
distribution of C and can be written as

P (C | S,Λ) =
1

ZS
N (WC | µS ,ΣS) = N (C | CS ,P S),

(18)
where ZS is a normalization term, and CS and P S are the
mean vector and the covariance matrix, respectively, defined
as

P S = (W>Σ−1
S W )−1, CS = P SW>Σ−1

S µS . (19)

Using the above distribution, the joint distribution of static
feature vectors C and hidden variables S can be written as:

P (C, S | Λ) = P (C | S, Λ)
∏

m=1,2

P (S(m) | Λ), (20)

where Λ is a set of model parameters of the proposed model.
In this paper, the proposed model is referred to as separa-
ble lattice trajectory 2-D HMMs (SLT2D-HMMs). Note that
covariance matrix P S is generally full even when using the
completely same number of model parameters as in SL2D-
HMMs. Therefore, the inter-pixel correlation can be modeled
by the covariance matrix P S . Moreover, SLT2D-HMMs can
be viewed as an HGMRF [16] and its graphical representation
can be specified by the window matrix W .

4. TRAINING ALGORITHM

The parameters of the proposed model can be estimated via
the expectation maximization (EM) algorithm [17]. This al-
gorithm maximizes the expectation of the complete data log-
likelihood so called Q-function:

Q(Λ, Λ′) =
∑
S

γS lnP (C, S | Λ′), (21)

where γS is the posterior probability of S given C and Λ.
All unique mean vectors m and inverse covariance matrices
φ in the model set Λ can be optimized by using the following
partial derivatives:

∂Q(Q, Λ)
∂m

=
∑
S

γSF>
SΣ−1

S W (C − CS), (22)

∂Q(Q, Λ)
∂φ

=
∑
S

γS

2
F>

Sdiag−1
[
WGSW>

+2µS(C − CS)>W>
]
, (23)

where GS = P S + CSC
>
S − CC>, and FS is a matrix

whose elements are 0 or 1 determined in accordance with the
state sequence S so that the following relationships are satis-
fied:

µS = F Sm, Σ−1
S = diag[F Sφ]. (24)

In the present paper, a Viterbi approximation is applied be-
cause it is computationally intractable to evaluate the pos-

terior probability over all possible state sequences S in
Eqs. (21), (22), and (23). The training procedure of SLT2D-
HMMs can be summarized as:

1. Initialize the model parameters and the state sequences
of SLT2D-HMMs by using the parameters and Viterbi
state sequences of SL2D-HMMs, respectively.

2. Update m and φ with Eqs. (22) and (23), respectively.

3. Search sub-optimal state sequences by adding a small
variation, e.g., ±1 on the state boundaries.

4. If the Viterbi-approximated Q-function has not con-
verged, return to step 2. otherwise, stop iteration.

5. EXPERIMENTS

5.1. Experimental conditions

To demonstrate the effectiveness of the proposed model, ex-
periments on modeling faces from the XM2VTS database [14]
were conducted. The face images were extracted from the
original images (720× 576 pixels and transformed into gray-
scale) and then sub-sampled to 16 × 16 and 32 × 32 pixels.
Two datasets were prepared with this process:

• “dataset 1”: size-location normalized data (the original
size and location in the database are used).

• “dataset 2”: data with size and location variations. The
sizes and locations were randomly generated by Gaus-
sian distributions almost within the location shift of
40 × 20 pixels from the center and the range of sizes
500 × 500 ∼ 600 × 600 with a fixed aspect ratio.

The images were modeled with 4 × 4, 6 × 6, 8 × 8, 10 × 10,
and 12 × 12 states and single Gaussian distributions. The
transition probabilities for each state sequence were assumed
to be a left-to-right and top-to-bottom no skip topology. The
observation vectors O were constructed by appending the 1st
order horizontal and vertical dynamic feature vectors to the
static features C. The window matrix W was designed to
satisfy Eq. (12), where L

(H)
+ = L

(H)
− = L

(V )
+ = L

(V )
− = 1,

w(H)(−1) = w(V )(−1) = −0.5, w(H)(0) = w(V )(0) =
0.0, and w(H)(1) = w(V )(1) = 0.5. The model parame-
ters of SLT2D-HMMs were estimated in accordance with the
training procedure as summarized in Section 4 by using the
Rprop [18] method which is an first order gradient-based op-
timization method.

5.2. Face recognition experiments

Face recognition experiments on the XM2VTS database were
conducted. We prepared eight images of 100 subjects; six
images were used for training and two images for testing.
In this experiment, the size of face images was 16 × 16.
Figure 1 (a) and (b) show the recognition rate of SL2D-
HMMs and SLT2D-HMMs. “SL2D” means the recognition
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Fig. 1. Recognition rates

rates of SL2D-HMMs. “NoUpdate” means the results of
SLT2D-HMMs with the same model parameters as SL2D-
HMMs. “ParamUpdate” and “FullUpdate” mean the results
of SLT2D-HMMs with the model parameters of SLT2D-
HMMs updated but with state sequences fixed, and with
both the model parameters and the state sequences updated,
respectively.

First, the recognition rates in figure 1 (b) were higher
than those in figure 1 (a). This indicates that both SL2D-
HMMs and SLT2D-HMMs could normalize the variations on
“dataset 2” successfully. It also can be seen that “NoUpdate”
remained lower than did “SL2D”, though the same model pa-
rameters were used between them. This is obviously because
the parameters were not optimized for the likelihood func-
tion of the SLT2D-HMMs. After the model parameters were
optimized, “ParamUpdate” and “FullUpdate” achieved better
results than did “SL2D” and “NoUpdate.” However, when
comparing “ParamUpdate” and “FullUpdate,” significant im-
provement of the performance could not be obtained. The
reason for this results can be explained as follows: In previ-
ous work [19], for 1-D HMMs, changing state boundaries by
adding small variations is effective for searching sub-optimal
state sequences. However, for SLT2D-HMMs, it must be

(a) (b) (c) (d)

Fig. 2. Visualization of state alignment. (a) is the test data,
(b) is the state alignment of SL2D-HMMs, and (c) and (d) are
the mean trajectory of SLT2D-HMMs w/ and w/o parameters
updated, respectively.

considered that the observations depend on horizontal and
vertical state sequences and that the combinations of both
state sequences affect the likelihoods. The re-estimation al-
gorithm for state sequences adopted in this paper is strongly
approximated in this viewpoint because it finds only one sub-
optimum state boundary from all the state boundaries of both
directions and the effect of the combinations is ignored. This
explains why a significant improvement of the recognition
performance was not obtained.

5.3. Image alignment experiments
To demonstrate the advantageous property of SLT2D-HMMs
for image recognition, an image alignment experiment was
conducted, where the size of the face images was 32 × 32.
Figure 2 presents the test image and its state alignments of
SL2D-HMMs and SLT2D-HMMs. From figure 2 (b), it can
be seen that a rectangular state alignment was obtained by us-
ing the SL2D-HMMs because of the constraint that the statis-
tics within a state do not change dynamically. In compari-
son, from figure 2 (c), it can be seen that the mean trajec-
tory C of the proposed model seemed smoother than did the
state alignment of the SL2D-HMMs. This indicates that the
constraint of the SL2D-HMMs of constant statistics was mit-
igated. However, the detailed parts of the test data (e.g., eyes
and nose) became blurred, since the model parameters were
not optimized for SLT2D-HMMs. After the model parame-
ters were optimized, from figures 2 (c) and (d), it can be ob-
served that the details of these parts became clearer. This also
explains the improvement of the recognition performance.

6. CONCLUSION
In this paper, SLT2D-HMMs were proposed. SLT2D-HMMs
can be defined by reformulating SL2D-HMMs and imposing
explicit relationships between static and dynamic features.
Experiments on image recognition and alignment were con-
ducted on the XM2VTS database. The proposed model
achieved better results than did the SL2D-HMMs. Imple-
menting more precise search algorithms such as the delayed
decision Viterbi algorithm [13] will be future work. The
comparison of recognition performance between the pro-
posed method and other classifiers such as support vector
machines [20] will also be future work.
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