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ABSTRACT

In biomedicine, it is typical to find studies discriminating be-
tween types of pathology or stages of disease based on as few
as 30 sample points and tens of thousands of genes. Unfortu-
nately, out-of-the-box classification and error estimation rules
come with no small-sample performance guarantees, which
has greatly contributed to the crisis in biomarker reproducibil-
ity. Recent work addresses this by supplementing the data
with expert biological knowledge via a prior distribution over
an uncertainty class of feature-label distributions, and uses the
resulting probabilistic framework to define minimum mean-
square-error (MMSE) estimators for the misclassification rate
of any fixed classifier, as well as the sample-conditioned MSE
itself for arbitrary error estimators. Here, we use the same
framework to also define minimum expected error (MEE)
classifiers, completing a Bayesian optimized theory of clas-
sification. We also present examples on real genomic data
resulting in classifiers that greatly outperform popular rules.

Index Terms— Bayesian modeling, classification, error
estimation, genomics, small samples

1. INTRODUCTION

Given a labeled training sample, the usual procedure is to ap-
ply a classification rule, which may involve feature selection,
and then to estimate the misclassification rate of the designed
classifier using an error estimation rule. The main epistemo-
logical issue here is model validity, which is addressed by
error estimation [1]. When large amounts of data are avail-
able, one can split the data into a training set for classifier
design and an independent test set used to estimate the error
of the classifier by r/m, where r is the number of incorrectly
classified points and m is the total number of test points. A
distribution-free bound for the root-mean-square (RMS) of
this holdout estimator is given by RMS(ε̂holdout|Sn−m, F ) ≤
1/
√
4m, where Sn−m is any training sample and F is any

feature-label distribution [2]. Clearly, accurate error estima-
tion is assured when m is large enough.

That being said, when samples are expensive or difficult
to acquire, training-data error estimation methods like boot-

strap and cross-validation are often used to avoid sacrificing
performance in the classifier. Not only is the situation com-
plicated by the use of training-data error estimation rules typi-
cally lacking theoretical performance bounds, but absent prior
knowledge these bounds are useless in the range of sample
sizes where these methods are needed [3].

With large samples, one may also appeal to Vapnik-
Chervonenkis theory [4] to find distribution-free bounds, as a
function of sample size, on the tail probability of the differ-
ence between the true and apparent error for any classifier, as
well as the tail probability of the difference between the error
of the best classifier in a family of classifiers and the error of
the designed classifier. However, just as with RMS bounds,
VC bounds are too loose to be useful for small samples.

We are thus left with no distribution-free guarantees re-
garding the performance of a designed classifier in a small
sample setting. In fact, studies have shown that error estima-
tion is indeed problematic even for fixed distributions, for in-
stance cross-validation and other re-sampling methods often
have large RMS due to high variance [5, 6, 7]. Small-sample
problems must be treated in their own right, without appeal-
ing to limiting theorems or bounds that require large sample
sizes. As long ago as 1925, R. A. Fisher wrote, “Only by
systematically tackling small sample problems on their mer-
its does it seem possible to apply accurate tests to practical
data” [8].

Small sample performance can be good when the Bayes
error is small enough [9, 10], and we may achieve perfor-
mance guarantees by assuming the feature-label distribution
is a member of some uncertainty class of states where the er-
ror estimator is known to perform well. Recent work goes
a step further to assign a prior distribution to an uncertainty
class and update the prior to a posterior given the data. The
prior can contain expert knowledge about the state of the sys-
tem, which is critical in practical problems where the sam-
ple alone does not contain enough information for valida-
tion. Given the posterior and a classifier, we may then find
a sample-conditioned RMS for any error estimator [11, 12];
for the first time we achieve a practical measure of the per-
formance of an error estimator relative to a Bayesian model,
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observed sample and designed classifier.
Not only that, but one may utilize the proposed framework

throughout the entire classification procedure to obtain opti-
mal MMSE estimators for the misclassification rate of any
classifier [13, 14], and herein we present new MEE classifiers
designed in the same framework [15, 16]. Optimization is
especially important in the small-sample setting because it is
here that classification and error estimation are most difficult.

We begin by reviewing the general theory behind MMSE
error estimation, the sample-conditioned MSE, and new MEE
classification rules. We then find MEE classifiers under a
Gaussian model with conjugate priors and demonstrate good
performance on real gene-expression microarray data.

2. THE BAYESIAN FRAMEWORK

Consider a binary classification problem with classes 0 and 1,
and let c be the a priori probability that a sample point is from
class 0. Let Θy be an uncertainty class of possible distribu-
tions for class y ∈ {0, 1} and let θy ∈ Θy parameterize the
class-conditional distribution for class y, denoted by fθy . Our
Bayesian framework assigns priors, π (c), π (θ0) and π (θ1),
to the parameters, c, θ0 and θ1, respectively. We assume that
θ0 and θ1 are independent from c prior to observing the data.

Given ny independent and identically distributed (i.i.d.)
sample points from class y, these priors are updated to pos-
teriors denoted by π∗, which combine prior knowledge with
observed data to quantify uncertainty in our knowledge about
the true state of nature. Independence is preserved after ob-
serving the data. Assuming a beta(α, β) prior for c (a uni-
form prior corresponds to α = β = 1) and random sampling
where the class of each point is an independent Bernoulli trial,
the posterior of c is also beta with updated hyperparameters
α+ n0 and β + n1. In this case, the expectation of c is

Eπ∗ [c] = n0+α
n+α+β , (1)

where n = n0 + n1 and Eπ∗ denotes an expectation relative
to the posterior (conditioned on the sample). Alternatively, c
may be known quite accurately a priori, for instance it may
represent the probability that an individual has a certain type
of cancer, in which case we set Eπ∗ [c] to the known value of
c. The posterior of θy is found by normalizing the product of
the prior and a likelihood function on sample points observed
from class y. That is,

π∗(θy) ∝ π(θy)
∏ny

i=1 fθy (x
y
i ),

where xyi is the ith sample point in class y. This follows from
Bayes rule if the prior is proper (normalizeable) and may be
taken as a definition otherwise, but in all cases the posterior
must be proper.

Letting θ = [c, θ0, θ1], the misclassification rate for any
fixed classifier ψn is of the form

ε (θ, ψn) = cε0 (θ0, ψn) + (1− c)ε1 (θ1, ψn) , (2)

where εy(θy, ψn) is the probability that ψn wrongly classifies
a point from class y having true parameter θy. Since c, θ0
and θ1, are unknown, we must estimate the error from data.
The MMSE estimator is equivalent to the expected true error
conditioned on the sample, i.e.,

ε̂MMSE (Sn, ψn) = Eπ∗ [ε (θ, ψn)]

= Eπ∗ [c]ε̂0 (Sn, ψn) + (1− Eπ∗ [c])ε̂1 (Sn, ψn) , (3)

where Sn is the sample and ε̂y (Sn, ψn) = Eπ∗ [εy(θy, ψn)].
The expectation of c depends on our prior model for c, and
ε̂y (Sn, ψn) can be found using the following theorem [15].

Theorem 1 Let ψ be a fixed classifier given by ψ (x) = 0
if x ∈ R0 and ψ (x) = 1 if x ∈ R1, where R0 and R1

are measurable sets partitioning the sample space. Then the
MMSE error estimator is given by (3), where

ε̂y (Sn, ψn) =

∫
R1−y

f (x|y) dx, (4)

f (x|y) =
∫
Θy

fθy (x|y)π∗ (θy) dθy. (5)

The sample-conditioned MSE of ε̂MMSE (Sn, ψn) is

MSE(ε̂MMSE|Sn) = Eπ∗ [(ε (θ, ψn)− ε̂MMSE (Sn, ψn))
2
].

By the orthogonality principle from MMSE estimation the-
ory, this is equivalent to the variance of the true error,
Varπ∗ (ε (θ, ψn)). Similarly, we have MSE(ε̂y|Sn) =
Varπ∗ (εy(θy, ψn)), and one can show:

MSE(ε̂MMSE|Sn) = Varπ∗ (c)
(
ε̂0 (Sn, ψn)− ε̂1 (Sn, ψn)

)2
+ Eπ∗

[
c2
]
MSE(ε̂0|Sn) + Eπ∗

[
(1− c)2

]
MSE(ε̂1|Sn).

The sample-conditioned MSE for an arbitrary error estimate
ε̂ also falls out naturally:

MSE(ε̂|Sn) = MSE(ε̂MMSE|Sn) + (ε̂MMSE − ε̂)2.

This quantifies the accuracy of ε̂ as an estimator for ε (θ, ψn)
conditioned on the actual sample in hand. There are numer-
ous applications, for instance we may employ it as a stopping
criterion in censored sampling, where sample points are col-
lected one at a time until the sample-conditioned MSE and
expected true error reach desired levels, either for the classes
individually or combined [12].

Closed form solutions for the MMSE error estimator and
the sample conditioned MSE are availalbe in both Gaussian
models with with conjugate priors and linear classification
and multinomial models with Dirichlet priors [13, 14, 11, 12].

3. THE MEE CLASSIFIER

The MEE classifier minimizes the expected true error:

ψMEE = arg inf
ψ∈C

Eπ∗ [ε (θ, ψ)] , (6)
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where C is an arbitrary family of classifiers [15, 16]. To moti-
vate this definition, note that under the Bayesian framework,

P (ψ (X) ̸= Y |Sn) = Eπ∗ [P (ψ (X) ̸= Y |θ, Sn)]
= Eπ∗ [ε(θ, ψ)] . (7)

Thus, MEE classifiers minimize the misclassification proba-
bility relative to the assumed model, given the sample. If C is
the set of all classifiers with measurable decision regions, the
MEE classifier is solved in the following theorem [15].

Theorem 2 An MEE classifier, ψMEE, satisfying (6), where C
is the set of all classifiers with measurable decision regions,
exists and is given pointwise by

ψMEE (x) =

{
0 if Eπ∗ [c]f (x|0) ≥ (1− Eπ∗ [c])f (x|1) ,
1 otherwise.

The MEE classifier is equivalent to the Bayes classifier for
fixed class-conditional distributions f (x|y), y ∈ {0, 1}, and
class-0 probability Eπ∗ [c]. This is like a plug-in rule, only
f (x|y) is not necessarily a member of the class-conditional
densities in our uncertainty class, but possibly some other
kind of density that happens to result in the optimal classi-
fier. We thus refer to f (x|y) as the effective class-conditional
density with respect to the posterior. Further, the optimal clas-
sifier is defined pointwise, labeling each point in the sample
space with the class having maximum a posteriori probability.

By Theorem 1, the MMSE error estimator for an arbitrary
classifier is equivalent to the Bayes error for the same effec-
tive feature-label distribution. Hence, f (x|y) contains all of
the necessary information to find the optimal classifier, the
optimal classifier error, and the error for arbitrary classifiers,
and we do not have to deal with the priors directly. Rather,
upon defining a model we find f (x|y), which depends on the
sample because it depends on π∗, and the problem is solved
by treating f (x|y) as the true feature-label distribution.

4. THE GAUSSIAN MODEL

Suppose each sample point is a column vector of D features,
where the class-y conditional distribution is Gaussian with
parameter θy = [µy,Σy], where µy is the mean and Σy is the
covariance. Although in [15] we consider three types of struc-
ture in the covariance, here we only consider the arbitrary co-
variance model where the parameter space of Σy consists of
all positive definite (valid covariance) matrices. We also con-
sider only the independent covariance model, where θ0 and
θ1 are independent prior to observing the data, although a ho-
moscedastic covariance model has also been treated in [15].

We assume a conjugate prior where Σy is invertible with
probability 1, and for invertible Σy we have

π(θy) = π(µy|Σy)π(Σy), (8)

where

π(µy|Σy) ∝ |Σy|−
1
2 exp

(
−νy

2 (µy −my

)T
Σ−1
y (µy −my))

π(Σy) ∝ |Σy|−
κy+D+1

2 exp
(
−1

2 trace
(
SyΣ

−1
y

))
.

We allow for proper or improper priors where νy ≥ 0, my is
a length D real vector, κy is a real number, and Sy is a non-
negative definite D ×D matrix. If νy > 0, κy > D − 1 and
Sy is positive definite, then this is a proper prior [17, 18]. In
this case π(µy|Σy) is Gaussian with mean my and covariance
Σy/νy and π(Σy) is an inverse-Wishart distribution where
Eπ[Σy] = Sy/(κy−D−1). Hyperparameter Sy controls the
expected covariance, and if Sy is scaled appropriately then
the larger κy is the tighter the prior is about this mean.

It can be shown that the posterior, π∗(θy), has the same
form as the prior with updated hyperparameters ν∗y = νy+ny ,
κ∗y = κy + ny and

m∗
y = (νymy + nyµ̂y)(νy + ny),

S∗
y = Sy + (ny − 1)Σ̂y +

νyny

νy+ny
(µ̂y −my)(µ̂y −my)

T ,

where µ̂y and Σ̂y are the usual sample mean and covariance,
repectively, of the ny points in class y. The priors are proper
if ν∗y > 0, κ∗y > D − 1 and S∗

y positive definite.
The effective density is a multivariate student’s t dis-

tribution having location vector m∗
y , scale matrix Ψy =

ν∗+1
(κ∗−D+1)ν∗S

∗ and ky = κ∗ −D + 1 degrees of freedom:

f (x|y) = 1

k
D/2
y πD/2|Ψy|1/2

×
Γ
(

ky+D

2

)
Γ
(

ky
2

)

×
(
1 + 1

ky

(
x−m∗

y

)T
Ψ−1
y

(
x−m∗

y

))− ky+D

2

.

As long as π∗ is proper, the effective density is also proper.
Also, if κ∗ > D the mean of this distribution is m∗, and if
κ∗ > D + 1 the variance is ν∗+1

(κ∗−D−1)ν∗S
∗.

The MEE classifier can be expressed as ψMEE(x) = 0 if
gMEE(x) ≤ 0 and ψMEE(x) = 1 if gMEE(x) > 0, where

gMEE(x) = K
(
1 + 1

k0
(x−m∗

0)
T
Ψ−1

0 (x−m∗
0)
)k0+D

−
(
1 + 1

k1
(x−m∗

1)
T
Ψ−1

1 (x−m∗
1)
)k1+D

and

K =
(

1−Eπ∗ [c]
Eπ∗ [c]

)2 (
k0
k1

)D |Ψ0|
|Ψ1|

(
Γ(k0/2)Γ((k1+D)/2)
Γ((k0+D)/2)Γ(k1/2)

)2

.

This classifier has a polynomial decision boundary whenever
κ0 and κ1 are integers. Although we only consider Gaus-
sian distributions in our model, the form of the MEE classi-
fier is not necessarily linear or quadratic, although it is easy to
evaluate at a fixed point x. The expected error of the classi-
fier may be found via Monte-Carlo integral approximation by
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Fig. 1. (a), (c) and (e): Example training sample of size n =
30 and classifiers from a real dataset with D = 2 selected
features. Class 0 points are marked with o’s and class 1 points
with x’s. (b), (d) and (f): Average holdout errors on a real
dataset with D = 2 selected features versus sample size.

drawing points from the effective densities f (x|y) and eval-
uating the proportion of misclassified points. The sample-
conditioned MSE can also be found via Monte-Carlo approx-
imation, though not via the effective densities.

5. PERFORMANCE ON REAL GENOMIC DATA

We consider three real microarray gene-expression datasets
from [22]. The first is a non-small-cell lung cancer (NSCLC)
data set with 198 sample points and 22,215 features, where
class 0 contains 54 points associated with 5-year disease-
free survival and class 1 contains 144 points associated
with death within 2.5 years [19]. The second is a primary
breast carcinoma dataset with 266 sample points and 5003
features, where class 0 contains 70 points associated with

distant metastases within five years and class 1 contains
196 points associated with disease-free outcome for more
than five years [20]. The final set is a lymph-node-negative
breast cancer dataset with 276 sample points and 22,215 fea-
tures, where class 0 contains 183 points associated with a
metastasis-free outcome for 5 years and class 1 contains 93
points associated with relapse in less than 5 years [21].

In all cases, we assume that c = N0/(N0+N1) is the true
class-0 probability, where Ny is the class-y sample size in the
full dataset. For a training sample of size n, we draw the ap-
propriate number of points for each class from the full dataset,
keeping the proportion of points in class 0 as close as possi-
ble to c. We eliminate features rejected by a Shapiro-Wilk
hypothesis test at a 95% significance level on either class, and
select 2 of the remaining features using a t-test.

After feature selection, we design three classifiers: linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA) and an MEE classifier from priors calibrated using the
method-of-moments approach proposed in [23] from the 5000
discarded features having largest t-test statistic. An example
training sample and designed classifier is shown in Fig. 1(a),
(c) and (e), each corresponding to a different dataset. Observe
that the MEE classifier is not necessarily linear or quadratic.

We approximate the true error for each designed classifier
using the holdout error on points not used in training. This
process is repeated 1,000 times for each dataset and sample
size. Once this iteration is complete, for each classifier we
find the average holdout error, which is plotted with respect
to sample size in Fig. 1(b), (d) and (f). Although MEE classi-
fication is not optimal for a fixed (empirical) distribution, but
only optimal when averaged over the uncertainty class, for
all datasets shown here the MEE classifier consistently per-
forms at least as well as LDA and QDA, often with substantial
gain. In addition, there may be much room for improvement
since we have achieved this using only a very simple Gaussian
model and a purely data driven method of devising priors.

6. CONCLUSION

MEE classification, along with MMSE error estimation and
the sample-conditioned MSE, constitute a new Bayesian the-
ory of optimal classification. This theory facilitates the addi-
tion of expert prior knowledge into the model and optimizes
classifier and error estimator design to improve performance.
More importantly epistemologically, we can validate findings
using the sample-conditioned MSE. Much is known beyond
this: invariance of MEE classification under invertible trans-
formations of the sample space, consistency of both optimal
classification and error estimation in the discrete and Gaus-
sian models under mild regularity conditions, and a connec-
tion between MEE classification with optimal Bayesian ro-
bust classification [15, 16]. Robustness to incorrect modeling
assumptions has also been investigated [14, 16].
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