
COMPETITIVE AND ONLINE PIECEWISE LINEAR CLASSIFICATION

Huseyin Ozkan1, Mehmet A. Donmez2, Ozgun S. Pelvan3, Arda Akman3, Suleyman S. Kozat1

1Bilkent University, Electrical and Electronics Engineering Department, Ankara, Turkey
2Koc University, Electrical and Electronics Engineering Department, Istanbul, Turkey

3Turk Telekom Group R&D, Ankara, Turkey

ABSTRACT
In this paper, we study the binary classification problem in
machine learning and introduce a novel classification algo-
rithm based on the “Context Tree Weighting Method”. The
introduced algorithm incrementally learns a classification
model through sequential updates in the course of a given
data stream, i.e., each data point is processed only once and
forgotten after the classifier is updated, and asymptotically
achieves the performance of the best piecewise linear classi-
fiers defined by the “context tree”. Since the computational
complexity is only linear in the depth of the context tree,
our algorithm is highly scalable and appropriate for real
time processing. We present experimental results on sev-
eral benchmark data sets and demonstrate that our method
provides significant computational improvement both in the
test (5 ∼ 35×) and training phases (40 ∼ 1000×), while
achieving high classification accuracy in comparison to the
SVM with RBF kernel.

Index Terms— Online; Competitive; Classification;
Piecewise linear; Context tree; LDA

1. INTRODUCTION
Classification is one of the most important tasks in machine
learning. For this task, when given a set of training data of two
classes, a classifier is trained via an algorithm with respect to
a predefined criteria, e.g., a regularized empirical error mini-
mization [1]. Among such algorithms, perhaps the most pop-
ular one is the nonlinear Support Vector Machines (SVM) due
to its power of modeling any nonlinear separation between
two classes with efficient generalization [2]. However, both
the training and test phases of nonlinear SVMs scale poorly
with the size of the training data [3], whereas linear machines
are computation-wise significantly less complex [3, 4]. When
given a nonlinear classification task, instead of solving for
the entire problem, we divide it into smaller linear problems,
each of which is solved via the Linear Discriminant Analysis
(LDA) [5]. Here, any linear machine, e.g., linear SVM, can
also be used, however, we choose LDA for its straightforward
online extensions [5]. To this end, we introduce a novel on-
line classification algorithm that approximates the nonlinear
separations via piecewise linear boundaries. Since our algo-
rithm operates sequentially through online updates, i.e., ev-
ery data point is processed only once, it operates significantly
faster than nonlinear SVM in the training phase. Moreover,
we prove that our algorithm sequentially and asymptotically
achieves, in the “soft sense”, the batch performance of the
best classifier in a certain class of piecewise-linear algorithms
Cl that we also introduce. Hence, our algorithm is competi-
tive. According to our experiments on several benchmark data
sets [6], we obtain computational improvement 5 ∼ 35× in

the test phase, and 40 ∼ 1000× in the training phase with
comparable classification accuracy to SVM with RBF ker-
nel. Furthermore, when the training size is in the order of ten
thousands in the case of applications such as road sign detec-
tion, or human detection [3], the computational improvement
is naturally even higher.

Our work is based on the concept of a “context tree”,
which has been applied with great success in various different
fields ranging from compression to machine learning [7, 8, 9].
A context tree is basically an efficient way of representing a
particular set of partitions of the observation space and assign-
ing a “context” to a specific observation through weighting on
those partitions [7]. In this paper, we consider a data instance
xt as the context of its label yt, and based on the context, our
algorithm predicts the label incorporating the Context Tree
Weighting Method (CTW). The aforementioned “competition
class” Cl is defined as the set of algorithms, each of which
operates on a different partition defined by the context tree
and applies LDA on every region of the corresponding parti-
tion independently. The CTW is used in the context of time
series prediction in [8], where the predictions are based on re-
gression analysis, which is repeatedly carried out on the past
data at every time t. However, we study the problem of binary
classification, that is based on discriminative analysis through
LDA. Moreover, our algorithm works incrementally, i.e., each
data point (context) is processed only once. In [9], context
trees are used as decision trees, where the observation xt is
assumed to be binary and no coding schema is provided for
real observations. In this study [9], since the prediction of yt
is solely based on the relative frequencies of the labels of the
previous observations sharing the same context with xt, the
proposed algorithm potentially requires relatively high depth
context trees for a satisfactory discrimination. On the con-
trary, we exploit the possible local linearities of the separa-
tion in the data by using LDA. Moreover, our algorithm can
work with real observations, for which we explicitly provide
a coding schema.

After we provide the problem definition in Section 2, we
introduce a baseline classifier in Section 3. Using this base-
line classifier, we design our online competitive classification
algorithm in Section 4. We demonstrate the performance of
our algorithm on several benchmark data sets in Section 5.

2. PROBLEM DEFINITION
Suppose we have a stream of i.i.d. samplesDT

1 = {d1, ..., dT },
where dt is the pair of the data point at time t and the cor-
responding label such that dt = (xt, yt), xt ∈ [−M,M]d

and yt ∈ {−1,+1}. A classifier operating in the do-
main of the streamed data points is defined to be a function
f : I ⊂ [−M,M]d → {−1,+1}. For training a classifier on
this data stream, i.e., selecting a classifier with respect to a

3452978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

pre-defined criteria, e.g., the error count, a training algorithm
F is defined as F : I ⊂ ([−M,M]d × {−1, 1})t → {fj},
where fj is a classifier and j is from an uncountable index set.
For instance, f = F(∅) provides the initial guess for the label
of x1. Given a training algorithm of this form, we also define
a sequential loss function l(F ;Dt

1) =
∑t
i=1(fi−1(xi)−yi)2,

where fi−1 = F(Di−1
1). Note that at every time instant

i, the additional error is computed for the classifier trained
on only the past data Di−1

1 , i.e., xi is a test point for the
algorithm since it is not included in training. In this sense,
we obtain a fair performance metric. Using this metric, we
study the following problem: Given a class of N algorithms,
C = {F1, ...,FN}, we seek for an algorithm such that it
performs asymptotically as well as the best one in C, i.e.,

l(A;Dt
1)

t
≤ l(F ;Dt

1)

t
+
O(1)

t
,∀F ∈ C, (1)

in a strong sense without any stochastic assumptions on the
observations. In this paper, we define a competition class
Cl of algorithms via the context trees [7] and then design a
competitive classification algorithm incorporating the CTW
[7] that achieves the bound in (1). To this end, in the follow-
ing section, we introduce a baseline classifier, from which the
competition class and our competitive algorithm are derived.

3. PIECEWISE LDA
In this section, we introduce a classifier, named “Piecewise
LDA”, which operates on a given partition of the input do-
main. Based on this, a certain collection of such partitions
will be specified and hence, a collection of Piecewise LDA’s
will be obtained as our competition class Cl in the next sec-
tion. Moreover, since Piecewise LDA is the main operational
block in design of our competitive algorithm, this section also
provides the intuition behind our work. Given a partition
P = {R1, ..., RnP

} such that
⋃
Ri = [−M,M]d, Piecewise

LDA, denoted by f , classifies a streamed data point xt as

f(xt) = sign(wTj xt + bj) if xt ∈ Rj and n+
j , n

−
j 6= 0, (2)

f(xt) = 1, if xt ∈ Rj and n−j = 0,

f(xt) = −1, if xt ∈ Rj , n+
j = 0, n−j 6= 0,

where n+
j , n−j are the number of points of Dt−1

1 in region
Rj labeled as 1 and −1, respectively. Also, (wj , bj) is ob-
tained by applying Linear Discriminant Analysis (LDA) [5]
independently in every region Rj ∈ P at time t− 1 based on
the past data Dt−1

1 . We assume equal and identity class co-
variances in every region Rj , which leads to wj = µ+ − µ−,
where µ+ and µ− are the class mean vectors. Note that when-
ever an observation xt ∈ Rj is streamed, it is processed only
once by updating µ+, µ− and wj to form the classification

at t + 1 as f(xt+1), i.e., µ̂+ =
n+
j µ++xt

n+
j +1

if yt = 1, and

similarly for µ̂−. Due to this update process, Piecewise LDA
can also be seen as an online algorithm operating on a given
data stream. Here, the assumption of equal and identity class
covariances can easily be dropped and a more sophisticated
LDA can be applied, which would also have straightforward
online extensions [5].

We emphasize that Piecewise LDA is defined based on
a given partition P . Hence, for every possible partition of

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

feature1

fe
at

ur
e2

Decision Boundaries for piecewise−LDA and SVM

Class 1
Class −1

LDA

SVM

Fig. 1. Piecewise LDA vs SVM. See the text for details.

the input domain, one can obtain a different classifier as de-
fined in (2). As an example, if we take d = 2, M = 4,
T = 500 (250 for each class), and use the 4-Quadrant Parti-
tion, i.e., P = {([−4, 0]× [−4, 0]), ([−4, 0]× [0, 4]), ([0, 4]×
[−4, 0]), ([0, 4]× [0, 4])}, to train the corresponding classifier
as explained, we obtain piecewise linear decision boundaries
(hence, nonlinear) for a set of data shown in Fig. 1, which
can be seen as the piecewise linear approximation of the non-
linear separation in the data. In this example, Piecewise LDA
performs nearly as well as the SVM with RBF kernel (sigma
parameter of RBF kernel is set to 1) in terms of the classifica-
tion accuracy. On the contrary, SVM requires 432 dot prod-
ucts in the test phase, whereas Piecewise LDA requires only
at most 4 dot products. This corresponds to∼ 105X speed-up
in the test phase.

Unfortunately, in the realistic scenarios, the optimal parti-
tion of the input space to train Piecewise LDA is unknown.
However, in the following section, we define the competi-
tion class Cl by specifying those partitions (and hence, algo-
rithms) via the context trees [7]. Then we design our online
competitive algorithm incorporating CTW [7] that competes
againstCl, i.e., achieves the bound in (1), meaning that selects
the best partition in Cl in the course of the data streaming.

4. ONLINE PIECEWISE LDA VIA CTW
In this section we introduce our competition class Cl and a
novel algorithm, named “Piecewise LDA via CTW” and de-
noted byA, based on the concept of a “context tree”. For ease
of exposition, we consider a stream of 2-dimensional data
points, i.e., d = 2. However, the d-dimensional extension
is straightforward. A K-depth context tree is basically a set
of nodes, each of which corresponds to a region in [−M,M]2

as shown in Fig. 2. The “root” node corresponds to the region
[−M,M]2 and is at the 0-depth, whereas the leaf nodes are at
the K-depth. For any internal (non-leaf) node ν with depth k,
i.e., k < K, the corresponding region is split vertically into
two equal halves if k is even; and horizontally otherwise. A
split at node ν generates two sub-regions, which are assigned
to the nodes νl and νr that are the children of the node ν.
Note here that the regions at the leaves of any pruned K-depth
context tree gives a partition of the space [−M,M]2, where
pruning can be defined as removing all the subtrees rooted
from some (or none) of the internal nodes of a given tree. For
an example see Fig. 2. Then, we specify the classCl as the set
of algorithms {Fi} as defined in (2), each of which sequen-

3453

Fig. 2. An example context tree. All possible partitions de-
fined by this tree is listed as: P1 = {ν},P2 = {νl, νr},P3 =
{νl, νrr, νrl},P4 = {νr, νlr, νll},P5 = {νll, νlr, νrr, νrl}.

tially operates on a different partition Pi given by the pruned
versions of a K-depth context tree.

To describe Piecewise LDA via CTW, we also define an
algorithm G applying LDA as defined in (2), except that it
does not operate on a partition of the input space [−M,M],
but on regions of the context tree. Namely, given the data
stream Dt

1, the algorithm G finds the data, which fall in the
region of the node ν and then applies LDA to train a clas-
sifier. Hence, for every node ν, we have the associated loss
l (G;Dt

1 (ν)), where Dt
1(ν) = {(xi, yi) : xi is included in

the region of node ν}. Next, we introduce our competitive
online classification algorithm Piecewise LDA via CTW as
follows: Given an arbitrary data stream Dt−1

1 , let the ob-
servation xt fall in the regions of nodes {ν1, ν2, ..., νK+1},
where the subscript i indicates the depth and ν1 is the root
node. Then the algorithm A is defined as a linear combi-
nation of the Piecewise LDA’s operating at vi’s such that
A(Dt−1

1) =
∑K+1
i=1 µifi,wherefi = G

(
Dt−1

1 (νi)
)

and∑K+1
i=1 µi = 1. The following theorem defines Piecewise

LDA via CTW by specifying a certain set of weights µi in
definition of algorithm A and states that it asymptotically
performs as well as the best algorithm in the competition
class Cl.

Theorem For the algorithm A, we can find a certain set of
weights µi such that the algorithmA asymptotically performs
as well as the best F ∈ Cl, i.e.,

l(A;Dt
1)

t
≤ l(F ;Dt

1)

t
+
O(1)

t
,∀F ∈ Cl.

Proof: We first emphasize that the algorithm A is a lin-
ear combination of Piecewise LDA’s at nodes of vary-
ing depths in the context tree. In order to have weight-
ing over these Piecewise LDA’s depending on the depths,
we define the “weighted probability” for each node ν as:
P tw(ν) = P (Dt

1(ν)|G) if ν is a leaf node in the context
tree; P tw(ν) = 1

2P (Dt
1(ν)|G) + 1

2P
t
w(νr)P

t
w(νl) other-

wise. Here, P (Dt
1(ν)|G) is the likelihood of the algo-

rithm G defined as P (Dt
1(ν)|G) = exp

(−1
2h l (G;Dt

1(ν))
)
.

Based on this definition, it is straightforward to show that
P tw(ν1) =

∑
∀Fi∈Cl

P (Fi)P (Dt
1|Fi), where ν1 is the

root node, P (Fi) = 2−ΓK(Fi) is the prior probability for
an algorithm Fi ∈ Cl with the constant ΓK(Fi), where∑
∀Fi

P (Fi) = 1 (cf. Lemma 2 in [7]). Moreover, we have
an efficient recursive procedure to compute P tw(ν1) at ev-
ery time t, as a new data point is streamed. Let us consider
the example shown in Fig. 2. At time t, the streamed data
point xt is included in regions of K + 1 = 3 nodes and

hence, P (Dt−1
1 (ν)|G), at only those nodes, need be updated

to compute P tw(ν1) as follows:

P tw(ν1) = γ1P (Dt
1(ν1)|G) + γ2P (Dt

1(νr)|G) + γ3P (Dt
1(νrl)|G),

where γ1 = 1
2 , γ2 = γ1

2 P
t
w(νl) and γ3 = γ2P

t
w(νl)P

t
w(νrr).

Then, for a general K-depth context tree, one can obtain:

P tw(ν1) =

K+1∑
i=1

γiP (Dt−1
1 (νi)|G) exp

(
−1

2h
(fi(xt)− yt)2

)
,

where fi = G
(
Dt−1

1 (νi)
)
; γi = γi−1

2 P tw(ν̄i) for 2 ≤ i ≤ K,
γ0 = 1

2 , γK+1 = γKP
t
w(ν̄i); ν̄i is the sibling node of νi, and

ν1 is the root. Let us consider

P tw(ν1)

P t−1
w (ν1)

=

∑K+1
i=1 γiP (Dt−1

1 (νi)|G) exp
(−1

2h (fi(xt)− yt)2
)∑K+1

i=1 γiP (Dt−1
1 (νi)|G)

.

If we let µi =
γiP (Dt−1

1 (νi)|G)∑K+1
i=1 γiP (Dt−1

1 (νi)|G)
, then

∑
i µi = 1 and

P tw(ν1)

P t−1
w (ν1)

=

K+1∑
i=1

µi exp

(
−1

2h
(fi(xt)− yt)2

)
.

Then, since exp
(−1

2h (fi(xt)− yt)2
)

is concave as a function
of fi(xt) for all values (fi(xt)− yt)2 < h, we apply Jensen’s
inequality and obtain the following inequality:

exp

(
−1

2h
(yt −

K+1∑
i=1

µifi(xt))
2

)
≥ P tw(ν1)

P t−1
w (ν1)

, where h > 4.

Recall that fi = G
(
Dt−1

1 (νi)
)

(fi depends on t − 1). Based
on the definition of algorithm A, if we let A(Dt−1

1) = αt−1

then, since P tw(ν1) =
∑
∀Fi∈Cl

2−ΓK(Fi)P (Dt
1|Fi),

exp

 t∑
j=1

−(yj − αj−1(xj))
2

2h

 = exp

(
−1

2h
l(A;Dt−1

1)

)
= P (Dt

1|A) ≥ P tw(ν1) ≥ 2−ΓK(Fi)P (Dt
1|Fi) (3)

is obtained. Taking the logarithm of both sides of the inequal-
ity in (3), we can complete the proof:

l(A;Dt
1)

t
≤ l(F ;Dt

1)

t
+

2h ln 2ΓK(F)

t
,∀F ∈ Cl.�

Note that the algorithm A, Piecewise LDA via CTW, yields
“soft” decisions for a given test point, i.e., g(xt) ∈ R, g =
A(Dt−1

1). Hence, we proved that in the soft sense, Piece-
wise LDA via CTW performs asymptotically as well as even
the batch performance of the best algorithm in classCl. Then,
we simply obtain the classification based on the soft decisions
by sign(g). In the following section, we present the experi-
mental evaluation of sign(g). In these experiments, the algo-
rithm A is trained sequentially using a training set, in which
our theorem demonstrates the fitting capability ofA w.r.t. Cl.
On a separate test set, the training is turned off, and the clas-
sification performance along with the test phase complexity
is compared with SVM with the RBF kernel. Nevertheless,
whenever a new data point is streamed along with the corre-
sponding label, Piecewise LDA via CTW is capable of keep
training in an online and computationally efficient manner as
shown in Section 5.

3454

feature 1

fe
at

ur
e

2

Piecewise LDA via CTW on Banana data set

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Class 1
Class −1

Fig. 3. Piecewise linear approximation of the nonlinear separation
in Banana data set. See text for details.

5. EXPERIMENTAL EVALUATION
In this section, the performance of our online classification
algorithm is demonstrated on four different benchmark data
sets, which are commonly used in machine learning applica-
tions [6]. Among these data sets, the followings are chosen
for their relatively large number of data points in training: (1)
Banana data set, which is a synthetic, d = 2 dimensional data
set with a training set of Ntrain = 1000 points, and a test
set of Ntest = 4300 points; (2) Image data set, which is a
d = 18 dimensional real data set with Ntrain = 1300, and
Ntest = 1010. We also have two other real data sets with rel-
atively small Ntrain: (3) Waveform data set, which is d = 21
dimensional with Ntrain = 400, and Ntest = 4600; and fi-
nally, (4) Titanic data set, which is d = 3 dimensional with
Ntrain = 150, and Ntest = 2051. For each of these data sets,
our online classification algorithm is sequentially trained in
the training set, where the context tree depth parameter D is
optimized through cross validations (the parameter h is fixed,
h = 8). For a comparison, we also train SVM with RBF,
k(x, y) = exp(−‖x−y‖

2

2σ2), with the kernel parameter σ and
the SVM fitting parameter C as provided in [6]. Then, we
calculate the empirical classification error rates on the test set.
Here, we point out that we used LIBSVM [10] for the imple-
mentation of the SVM, which is an efficient open source SVM
library implemented in C++.

In these experiments, Piecewise LDA via CTW is ob-
served to perform nearly as well as the SVM in terms of the
classification accuracy. This indicates that our algorithm is
able to successfully approximate the nonlinear separations in
the data sets through piecewise linear boundaries. For an ex-
ample, when our algorithm is trained with D = 10 for the
Banana data set, the piecewise linear classification bound-
aries that we obtain are shown in Fig. 3. In this case, the
classification error rate is observed to be %14, which is only
%4 worse than that of the SVM (trained with the parameters
as in [6]). On the other hand, since the context tree depth
parameter is used as D = 10, only 10 dot products for clas-
sification of a new test point is required, whereas SVM re-
quires as many dot products as the number of support vectors
nSV = 228. Note that the decision function for SVM [2]
is given as f(x) =

∑nSV
i=1 αik(x, xi) + b. This corresponds

to∼ 25× computational reduction achieved by our algorithm
in the test phase. As for the training, SVM takes ∼ 121 mil-
liseconds (ms) processing time with LIBSVM [10]. Here, we
point out that SVM is not a sequential algorithm, i.e., when-
ever the classifier needs update, the algorithm is re-trained on

Table 1. Classification error rates, training times and test phase
complexity for each data set and each algorithm. Piecewise LDA via
CTW performs nearly as well as SVM, whereas the training and test
phase complexity is significantly reduced. See text for details.

Data Sets Piecewise LDA via CTW SVM with RBF
Error Depth Training Error nSV Training

Banana 0.140 10 0.14 ms 0.101 228 121 ms
Image 0.060 20 0.40 ms 0.030 153 168 ms
Waveform 0.141 6 0.11 ms 0.118 200 27.0 ms
Titanic 0.230 10 0.11 ms 0.213 65 4.19 ms

the entire training set. Thus, in order to have a fair compar-
ison, this re-training time for the SVM is compared in Ta-
ble 1 to the update time of our algorithm for the last point in
the training set, i.e., the update time when the Ntrain’th data
point is streamed. This update takes 0.142 ms, which indi-
cates ∼ 1000× speed up in the training phase of the Banana
data set. Corresponding findings for each data set are summa-
rized in Table 1.

In particular, for the Waveform data set, we have notably
high degree of sparseness due to the high dimensionality d =
21, when compared to the small number of training points
Ntrain = 400. For this reason, relatively simpler models are
found to be more appropriate such as D = 6. Even in this
case of high sparseness, Piecewise LDA via CTW still per-
forms comparable to SVM with significant computational re-
duction both in training (∼ 250× speed-up in training) and
test phases (∼ 35× speed-up in test). Nevertheless, the com-
putational gain in the training phase is much smaller than that
in the case of Banana data set. This is related to the size of
training. In general, when we have larger size of training sets,
the computational gain is also greater w.r.t. SVM with RBF
due to its poor scaling capability with the size of training data
[3]. Hence, we would expect to obtain drastically higher com-
putational gains in case of applications such as Road Sign
Detection or Human Detection [3], where the training sets are
usually in the order of ten thousands. On the other hand, we
obtain less computational gain in case of the Titanic data set,
where Ntrain = 150. In these experiments, our algorithm is
shown to be appropriate for real time processing. Further-
more, since the computational complexity of our algorithm is
directly controllable by the context tree depth parameter D, it
can be computationally further optimized, if desired.

6. CONCLUSIONS

In this paper, we proposed a novel, online classification algo-
rithm, which provides significant computational improvement
corresponding to 5 ∼ 35× in the test phase and 40 ∼ 1000×
in the training phase with comparable classification accuracy
to SVM with RBF kernel in our experiments. The proposed
algorithm operates on a given data stream through sequen-
tial updates and approximates complex nonlinear separations
by piecewise linear decision boundaries with computational
complexity that is only linear in depth of the context tree.
Hence, our method is scalable and appropriate for real time
processing. In addition, we proved that our algorithm is se-
quentially “competitive”, i.e., it asymptotically achieves the
batch performance of the best classifier in the class of algo-
rithms Cl that we also introduced.

3455

7. REFERENCES

[1] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduc-
tion to statistical learning theory,” Advanced Lectures
on Machine Learning, pp. 169 – 207, 2004.

[2] C.J.C. Burges, “A tutorial on support vector machines
for pattern recognition,” Data Mining and Knowledge
Discovery, vol. 2, pp. 121–167, 1998.

[3] F. Porikli and H. Ozkan, “Data driven frequency map-
ping for computationally scalable object detection,” in
AVSS, 2011, pp. 30 –35.

[4] T. Joachims, “Training linear svms in linear time,” in the
12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2006, pp. 217–226.

[5] K. Hiraoka, M. Hamahira, K. Hidai, H. Mizoguchi,
T. Mishima, and S. Yoshizawa, “Fast algorithm for
online linear discriminant analysis,” in Proceedings of
ITC, 2000, pp. 274 – 277.

[6] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R.
Mullers, “Fisher discriminant analysis with kernels,” in
Neural Networks for Signal Proces., 1999, pp. 41 –48.

[7] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens, “The
context-tree weighting method: basic properties,” IEEE
Transac. on Inform. Theory, vol. 41, pp. 653 –664, 1995.

[8] S. S. Kozat and Zeitler G. C. Singer, A. C., “Univer-
sal piecewise linear prediction via context trees,” IEEE
Transactions on Signal Processing, 2006.

[9] D. P. Helmbold and R. E. Schapire, “Predicting nearly
as well as the best pruning of a decision tree,” Mach.
Learn., vol. 27, pp. 51–68, 1997.

[10] Chih-Chung Chang and Chih-Jen Lin, “Libsvm: A li-
brary for support vector machines,” ACM Trans. Intell.
Syst. Technol., vol. 2, pp. 27:1–27:27, 2011.

3456

