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ABSTRACT

This paper addresses the problem of the supervised signal classi-
fication, by using a hierarchical Bayesian method. Each signal is
characterized by a set of parameters, the features, which are esti-
mated from a set of learning signals. Moreover, these parameters are
distributed according to a class-specific posterior distribution which
allows one to capture the variability of the features within the same
class. Within the hierarchical Bayesian framework, the feature ex-
traction step and the learning step can be performed jointly. Unfor-
tunately, the estimation of the class-specific distribution parameters
requires the computation of intractable multi-dimensional integrals.
Then a Markov-chain Monte Carlo (MCMC) algorithm is used to
sample the posterior distributions of the features over all the training
signals of each class. An application to electrical transient classifi-
cation for non-intrusive load monitoring is introduced. Simulations
over real-world electrical transients signals are driven and show the
capacity of the proposed methodology to discriminate two classes of
transients.

Index Terms— Hierarchical Bayesian model, MCMC methods,
supervised classification, curve fitting, smooth transition regression
model, non intrusive appliance load monitoring.

1. INTRODUCTION

Bayesian inference is an usual method in a learning framework [1].
This allows classification algorithms to be derived, based on the pos-
terior distributions of some features that characterize a class. These
posterior distributions are inferred on some learning signals. Fi-
nally, the classification task is usually performed for a given signal
by choosing the class that maximizes the posterior probability of the
features that have been extracted.

In standard classification methods, feature extraction and learn-
ing are performed separately. This approach is adequate when the
feature extraction step is straightforward. However, in some cases,
the feature extraction requires the use of computational estimation
methods as, for instance, Markov chain Monte Carlo (MCMC) sam-
pling methods in a hierarchical Bayesian approach. Under such cir-
cumstances, it is interesting to perform jointly the feature extraction
and the learning tasks [2]. Furthermore, such a strategy offers the
possibility to include some prior knowledge at different levels of ab-
straction in the hierarchical model. Then, feature variability within
a class is taken into account in order to support classification.

The detection and the classification of electrical transients are
useful in the context of non intrusive load monitoring (NILM). Ma-
chine learning methods have received a great attention to tackle
NILM [3, 4]. The so called microscopic methods focus on the
analysis of the waveform of the electrical transients. In fact, some
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seminal works- [5] have shown that, when an appliance is turned
on, it generates an electrical transient which is characteristic to the
kind of the appliance. Consequently, some methods have already
been investigated to detect and classify these appliances by fitting
the transients that appear in the load curves according to some deter-
ministic pattern [6]. However, these deterministic rules lead to some
specific and manual feature extraction methods which are difficult
to be generalized to real-world applications.

The main contribution of the present work is to study a gen-
eral fully probabilistic approach to model and to classify the differ-
ent electrical appliance transients. Thus, it benefits from the many
advantages such as flexibility, confidence values, robustness... of-
fered by probabilistic pattern recognition methods. The considered
work extends the smooth transition regression modeling proposed in
[7, 8] to the supervised classification problem. In [7, 8], a hierar-
chical Bayesian model was introduced to fit an unique transient with
a view of achieving a sparse representation. In a machine learning
framework, it seems now quite natural to account for some overhy-
potheses [9] on the feature variability. In our hierarchical Bayesian
framework, these overhypotheses reduces to some hyperpriors com-
mon to all the signals of the same class. As a consequence, the
feature extraction specific for each signal of a given class, and, the
learning over all different electrical transient classes are performed
jointly.

This paper is outlined as follows. The hierarchical Bayesian
learning method based on the smooth transition regression param-
eters is given in the second section. The MCMC algorithm derived
to infer the signal features and to learn the class-specific parame-
ters is presented in section III. Some simulations conducted on real-
world electrical transients are reported in section IV. Finally, some
concluding remarks are exposed in the last section.

2. HIERARCHICAL BAYESIAN LEARNING

In a supervised classification context, the set of the training samples
is denoted as X. In our application, each sample x € X stands
for the time series associated with a training signal. The class-label
of ¢(x) € C = [1,...,N¢] is known for each example x, and
N¢ denotes the number of different classes. For all ¢ € C, the
subset X, = {x € X such that ¢(x) = ¢} contains all the samples
belonging to class labeled as ¢, whereas the number of samples in
this class is denoted as N. = card(X.). Finally, x; . stands for the
it" sample in the class c.

The classification problem formulated in a Bayesian framework
reduces to the computation of the posterior distributions f(c|x, X.)
for each ¢ € C and for any given signal that does not belong to the
training set : x ¢ X.. Assuming a zero-one loss function, the sig-
nal x is classified according to the following maximum a posteriori
decision rule:

¢(x) = argmax f(c|x, X.). (1)
ceC
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Fig. 1: Directed acyclic graph of the parameters and hyperparame-
ters of the hierarchical Bayesian model - ¢ are the hyperparameters
- 0; are the features/parameters of the signal z;

In the context of a model-based classification, a set of parameters (or
features) @ is extracted from an input signal x, using a parametric
model. This model is defined by its likelihood function f(x|@) for
all @ € ©, where © denotes the feature space.

2.1. Hierarchical Bayesian model

We will assume now that the signals belong to a given class c. For
the sake of simplicity, the ¢ subscript is omitted in the following.
The training signal x; of the class ¢ is modeled according to the
following hierarchical model:

X ~ f(x\ez), (2)
0; ~ f(6lg), 3
¢ ~ [f(@lo), O]

where ¢ is set of hyperparameters which define the distribution of
the parameters 6 within a class. These expressions show that, first,
each training signal x; is governed by a specific vector of features
6;. This favors the ability of the model to account for the variabil-
ity between the features of the same class. Secondly, all the feature
vectors 6; associated with all the training signals are governed by
the same class-specific distribution. The hyperparameters ¢ of this
distribution depends only on the considered class c. This ensures
the ability of the model to categorize the different features in the
same class. Last, the distribution f(¢|c) corresponds to the prior
on these class-specific parameters. These hypotheses introduced in
the hierarchical Bayesian model are set up at different levels of ab-
straction. This is in agreement with the notion of overhypothesis,
as introduced, for instance, in [9]. These relations are depicted on
the directed acyclic graph of the parameters and hyperparameters in
Figure 1. Each stage of the underlying hierarchical Bayesian method
is related to one of the standard steps of supervised learning:

1. Estimate 6; from x; is the feature extraction stage,

2. Estimate ¢ from {6, ..

It is of note that these two steps are performed jointly within the hi-
erarchical Bayesian framework. This is an appealing characteristic,
these two steps being performed successively in a standard classi-
fication framework. Indeed, the estimation of the features of each
training signal is improved if the feature distribution of the signals
of the same class is taken into account.

In order to derive the classification rule, one needs to learn the
parameters ¢ from the training examples X'. The following expres-
sion of the joint posterior of the class-specific parameters ¢ and the
signal-specific parameters 6; is derived, assuming that the training
examples are independent conditionally to ¢

., 0N} is the learning stage.

N
[(,01,...,05|X) < f() Hf(xz-\Oi)f(Oiltb). ®)

3443

Finally, the following expression of f(¢|X) is deduced from (5)
F(@1X) o f@)TLL, [ f(x:|0:)f(8:]p)d0i.  (6)

Note that (5) is the most useful equation in our hierarchical Bayesian
method as the analytical integration over the parameter space in (6)
is not tractable in the general case.

2.2. Smooth transition regression model for transient modeling

For the processing of the electrical transients of our database, a spe-
cific model has been introduced in [7, 8]. We briefly recall in this
section the basics of this model. The signal is modeled as a se-
quence of K constant consumption level connected by a sequence
of K — 1 transition functions centered around the time instants 7; =

[Ty, Trc—1,:]7. Then, forall j = 1,...,n;
K
xilj] = D [me-1i(ts) = mi(8)]Br,i + eild], ™
k=1

where n; is the length of the time series, ¢; is an i.i.d centered Gaus-
sian noise vector with a variance 62, 8; = [81,, . . ., Bx,i| " is a the
vector of the active power consumption levels, and 7o i, ..., 7Tk,
is the set of the transition functions. These transition functions are
chosen among the family of stretched exponential functions

o exp (ak,;)
1—exp {(t ’“) * } t> Tk

Ak,i
0 t< Th,i

Tr,i(t) = (8)

Each transition function 7, ; is parameterized according to a location
parameter Ty ;, a scale parameter A, ; and a shape parameter o,;.
The number of components K is supposed to be known for each
class of signal.

The linear relation between x; and 3, is captured by the matrix
Z;, the entries of which depend on the transition function parameters

The likelihood function for this model reads
1 1 T
f(X1.|01) X W exp (ﬁ(xl — Z’Lﬁz) (Xi — Z’Lﬂz)) ,
(10)

where the parameter vector is 8; = {03, B,,m;}, with n, being the
set of the transition function parameters 17, = (Tk.,i, Ak iy Qi) k=1,..

2.3. Prior distribution

In this work, we assume the classical hypothesis which leads to the
naive Bayes classifier [1] (i.e conditional independence of the fea-
tures given the class), which yields the following expression of the
class-specific distribution over the parameter space

K—1

F0ilp) = f(ollp) £(B:) T] £

k=1

Pag) f (il o, Uik)7

where ¢ {po,Px, e, 02} is the hyperparameter vector,
whereas px = (pag)k=1,....k—1, o = (fay)k=1,...,k—1, and
ol = (aik)kzl,___, K —1 are the parameters of the hyperpriors.
Conjugate inverse-gamma prior and g-prior are chosen for the
variance of the observation noise o2 and the coefficients 3, respec-

tively

0-1'2|pf" ~ Ig(17 p”)7
B,|6* ~ N(0,0%6%(Z." Z:)71),

11
12)

LK—1



with ZG being the inverse-gamma distribution, N being the normal
distribution and 62 being fixed to §% = 50.

As the dependence of the likelihood with respect to the shape
and scale parameters of the transitions functions is non standard,
conjugate priors cannot be selected. Since no prior information is
available on these parameters, vague priors defined on a support in
agreement with the parameter spaces are considered. This leads to
the following gamma and normal priors for the scale and shape pa-
rameters respectively

Aeyil Wk, Pag) ~ G(Wak, PAL), (13)
akd'(/‘takvgik) NN(HamUik)~ 14
with G being the gamma distribution with the vy ;, being fixed to the
deterministic value vy, = 1forall k = 1,..., K — 1. The set
of hyperparameter ¢ represents the distribution of parameters within

a class. The prior distributions of these hyperparameters are called
hyperpriors.

2.4. Hyperprior distribution

Since no information on these hyperparameters is available a priori,
non informative, or sufficiently vague, priors are chosen

1
f(ﬂakaimP/\k) X _ng _px HRXRJrX]R*(Mﬂkaikvp)\k) s)
o k
1
J(po) p_HR+ (po), (16)

with [[4 being the indicator function for the set A.

2.5. Marginalized posterior

The full joint posterior of class-specific parameters ¢ and parameters
of each signal 0; is deduced from the likelihood, the prior distribu-
tions and the hyperprior distribution using eq. (5). Then, the param-
eters 3,, o? and hyperparameters p N> Mo o2, are integrated out.
Then the marginalize posterior distribution is :

f(TA o, ps|X) x 17)
Fpo) Ty F((Aki)i=1,..~) f((0ki)i=1,.. N)

ny

A i
I, (ﬂo +3 (%Txi - %x?ZiT(ZiTZi)*Zm» ’

with

71\71/)\,6 N

H)\;i(VAkfl)’ (18)
i=1

w[z

N

N 2
f((aki)i=1,...N) Z (Oqu: - %Zam) . (19
i=1

i=1

However analytical estimation of the remaining parameters and
hyperparameters is not tractable. In this case, we sample the poste-
rior distribution (5) by using an MCMC algorithm [10].

3. MCMC ALGORITHM

The standard Metropolis-Hastings algorithm is used to sample the
parameters of the transitions 7, A, o for each training signal from
marginal posterior distribution (17). That is, at the iteration ¢, one
of the transitions k¥ € [1, K — 1] from the ith signal is selected
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and a proposal (7%, by &, Ak ) is drawn from a proposition distribution
q(T, A, o). The proposal is accepted with the probability

(20)

£ X a ORXCING)

Fr0, X0, a0]X)q(7, X, &)
The reader is invited to read [8] for a full description of the proposi-
tion distribution ¢(7, A\, ).

An acceptation-rejection move of the transitions configuration is

attempted iteratively for each training signal. A sketch of the overall
MCMC algorithm is

e for each training signal : v =1,...,N
— select one of the transitions k € [1, K — 1]

— draw a sample of Ty, ):k, ay, according to the proposi-
tion distribution q(7, A\, «).

— accept the proposal with the probability P defined in
(20)

— sample o? according to his marginal posterior distribu-
. . 2
tiona?|n;, po ~ IG (% +1,ps + % (:cfacl — ﬁ)

N——

e sample p, according to his marginal posterior distribution
-1
N
m~g@ﬂ3ﬂﬁ]>

This algorithm generates a Markov chain of parameters (7, A, c)
asymptotically distributed according to their marginalized posterior
f(r, A, alX) (5). It is of note that, even if the hyperparameters ¢
have been integrated out, it is straightforward to derive their condi-
tional posterior from the full joint posterior (5) thanks to the choice
of conjugate hyperpriors. Then, the hyperparameters ¢ can be sam-
pled from their conditional distribution in an additional Gibbs move
within the MCMC algorithm. Furthermore this distribution, denoted
for each ¢ € C as

dle ~ fild|Xe), @1

is now of particular interest since it summerized the information pro-
vided by all the training set of signals for a given class c¢. This is
the result of the learning step for our hierarchical Bayesian learning
model.

3.1. Bayes factor computation

To evaluate the capacity of our method to discriminate efficiently
two classes of transient, we estimate the Bayes factor b2 [11] of
class c; against class ¢ which is defined for a signal = as

_ flelz) _ [ f(x10)f(01¢)fi(¢|Xc,)dOd
fleasl) [ [ (x10)(6|9)fi(B|Xe,)dOdD

Since the integrals over the parameters 6 and ¢ are not tractable,
we use Monte-Carlo integration to compute the Bayes factor [12].
More precisely, we sample the posterior distribution of the model
(7) over a joint space created by a class indicator ¢ € C, the param-
eters and the hyperparameters of the hierarchical Bayesian model.
Then the MCMC estimate of the Bayes factor 1312 is obtained as the
ratio of the number of occurences of ¢ = c; against the number of
occurences of ¢ = c2 within the samples of the class indicator c.
Note that for each test signal « the parameters 8 and hyperparame-
ters ¢ are re-sampled together with the class indicator ¢ of the test
signal. The hyperparameters ¢ are sampled according to the distri-
bution f;(¢|X.) learned previously, whereas the parameters 6 are
drawn according to their conditionnal distribution f(0|¢). The full
description of the MCMC algorithm used for the sampling of c is out
of the scope of this communication (see [12] for more details).

(22



4. RESULTS

The hierarchical Bayesian learning framework introduced in this
work has been used in the context of nonintrusive load monitoring
[5, 4, 3], more precisely for the identification of electrical transient
produced by one appliance being turned on [6]. This issue is quite
challenging and, to our knowledge, their is no standard method or
public dataset of such transient signals so that we can give compar-
ative results to assess the performance of the method introduced in
this work. Moreover, using the smooth regression model to extract
some features from the signal yields a trans-dimensional space:
each class is not described with the same number of features. Un-
fortunately, standard supervised learning methods [13] can not deal
directly with such kind of a feature space.

The method has been tested over a database of real-world elec-
trical transient, provided by EDF R&D. The transients are gener-
ated by Nc = 2 classes of appliances, ¢; = “vacuum cleaner”
and cz =“refrigerator”, the number of signals being N., = 18 and
N, = 36 for each class respectively. The database has been split in
half to form a learning set and a test set of signals. The number of
component K is fixed for each class, using prior work [7,8]: K1 = 3
for the class ¢; and K2 = 4 for the class c2. The MCMC algorithm
has been applied to generate samples from the joint posterior dis-
tribution of parameters and hyperparameters in order to perform the
feature extraction and the learning of each class. The first 2 x 10°
iterations which corresponds to the burn-in period have been thrown
away. The next 3 x 10? iterations are used to estimate the poste-
rior distribution f;(¢p|X.) of the hyperparameters over the training
signals. These posteriors are depicted in Figure 2 for the class c;.
Similar results are obtained for the class c2 but are not displayed for
brevity reasons. It is interesting to note that these distributions are
quite regular although they summarize all the training set of signals.

Within each class, two different signals with their curve fitting
estimates derived from the smooth transition model are also depicted
in Figures 3 and 4 for classes c¢; and cz respectively. This figures
show that the feature parameters 0 can take quite different values
from one signal to another within a same class. This emphasizes
their variability within the class and thus the interest of the proposed
hierarchical Bayesian approach where the learning is performed on
the hyperparameters ¢ rather than directly on the parameters 6.

o2 I 1st transition
0.15 I °nd transition
0.1
0.05

al I

1 2 3 4 5 -1 0 1 2
(a) po posterior (b) jta posterior

0.3 I 1 st transition I 1st transition
Il 2nd transition Il 2nd transition
2
0 0.5
0.4 I
0 “‘l‘,... 0 -IIII'I-.
0 2 4 6 0 5 10

(c) ag posterior (d) p) posterior

Fig. 2: Hyperparameter learned distribution f;(¢|X.,) for ¢

Finally, to assess the ability of this method to discriminate the
two classes of transients, the MCMC estimate of the Bayes factor
b2 has been computed for each test signal. Table 1 reports these
estimates for the 8 test signals of the class c¢1, numbered from 1 to
8, and for the 8 first test signals of the class c2. The value by for
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Fig. 3: Two examples of the active power (kW) versus time (s) for
vacuum cleaner transient (blue) with their smooth transition regres-
sion fit (red) and the position of the transitions (black)

T 7
0.4 ! 0.2
0.3 ! 0.15
1
0.2 | 0.1
1
0.1 L 0.05
0 L Owst
2 4 6 2 4 6
(a) 1°¢ test signal of class ca  (b) 8" test signal of class co
b2 =0 b1 = 5.5

Fig. 4: Two examples of the active power (kW) versus time (s) for
refrigerator transient (blue) with their smooth transition regression
fit (red) and the position of the transitions (black)

signal | 1 2 3 4 5 6 7 8
c1 30 | 58 | 14 | 13 | 37 | 1.6 | 5.0 | 14
c2 0 [0 |0 |O |O |O 0 5.5

Table 1: MCMC estimates of the Bayes factor l;lg for each test sig-
nal (columns) of the two classes c¢; and c2 (rows). The bold values
correspond to the test signals shown in Figures 3 and 4.

the test signals of the class c which are not shown in table 1 is 0. It
means that, the convergence of the MCMC sampler being reached,
the label parameter c takes only the value co. Within the N¢ = 2
classes, the two signals depicted in Figures 3 (c; class) and 4 (c2
class) correspond to the greater and the lesser value of the Bayes
factor estimates, whose values are indicated in the corresponding
subcaption. The 8 i gnal of class c2, shown in figure 4(b) is classi-
fied in the wrong class, bia being greater than one. The 6" signal of
class c1, shown in figure 3(b) is well classified though b is barely
greater than one. Nevertheless, the results suggest that the proposed
model is discriminant with respect to this two classes. Indeed, ex-
cept for the two signals mentioned, every test signals are classified
with a substantial evidence in favor of the correct model (B > 3.2
according to Kass’s interpretation of the Bayes factor [11]).

5. CONCLUSION

A hierarchical Bayesian method has been introduced to perform
jointly the feature extraction and the class learning over a database
of electrical transients. With this methodology, the variability of
the signal features within a class is summarized by the posterior
distribution thanks to a few number of hyperparameters. The results
obtained over a few number of test signals suggest that this method
is able to separate efficiently some appliance classes without over-
learning the training set of signals. However, to be fully convincing,
the evaluation of the classification performance has now to be con-
ducted over larger data sets, and over other classes of transients. The
extension of the method to detect and classify multiple transients in
a single signal is also under investigation.
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