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ABSTRACT

This paper provides, for the first time, exact analytical expres-
sions for the first moment of the true error of linear discrim-
inant analysis (LDA) when the data are univariate and taken
from two stochastic Gaussian processes. We assume a general
setting in which the sample data from each class do not need
to be identically distributed or independent within or between
classes. As an application of this framework, we characterize
the performance of LDA in situations that the data are gener-
ated from autoregressive models of the first order.

Index Terms— Linear discriminant analysis, Stochastic
settings, Non-i.i.d data, Expected error, Gaussian processes

1. INTRODUCTION

It is common in practice to assume that the training data
used to construct a classifier are independent and identi-
cally distributed (i.i.d). Should the data be dependent or not
identically distributed, the classifier performance is affected.
This paper presents a mathematical framework for analyti-
cally studying classifiers in such situations in general, and
the univariate LDA (linear discriminant analysis) classifier
in particular. We pay particular attention to the univariate
LDA model because it is possible to obtain closed-form (not
asymptotic) results for moments of the error – in analogy to
moments for the error [1, 2] and error estimates [1, 3] for
univariate LDA with i.i.d. sampling. The desired framework
is achieved by placing classifier performance in a stochastic
setting where the training data are univariate dependent and
not necessarily identically distributed (non-i.i.d.).

Motivation for this line of research goes back to the early
1970’s when Basu and Odell observed in remote sensing ap-
plications that the conditional expected true error of LDA is
commonly higher than what is expected from a theoretical
analysis [4]. They associated this observation with violation
of the independence assumption on the training data. Follow-
ing this work, several researchers obtained asymptotic expres-
sions for the first moment of LDA true error in situations that
the data have a specific correlation structure [5, 6].

Typically, large-sample asymptotic results are not helpful
in small-sample situations [7]. This understanding led us to
study the distribution and exact moments of LDA true error

and comnon estimators [3, 7, 8]. Having laid the groundwork
for analyzing LDA related statistics in small-sample situa-
tions, in this work, we establish a stochastic framework for
studying univariate LDA true error in a general setting. We
neither impose a specific correlation structure on the training
data, nor do we assume the training data have necessarily the
same mean or variance. For example the basic assumption in
[4, 5, 6] is that the training data of the two classes are taken
separately from two class conditional densities Π0, for class
0, and Π1, for class 1. This assumption immediately imposes
several restrictions on the problem: the training data from
each class have the same mean and variance (because they are
coming from the same distribution) and, furthermore, only in-
traclass correlations exist. The stochastic setting permits us to
generalize such assumptions to training data being correlated
across classes or the samples from each class being differ-
ently distributed. To model such data we employ Gaussian
processes and we assume the samples are taken from class
conditional processes rather than class conditional densities.

2. LINEAR DISCRIMINANT ANALYSIS AND
ERROR ESTIMATION: INDEPENDENT SAMPLING

In this section, we present the traditional sampling scenario in
which LDA is employed. Consider a set of n = n0 +n1 inde-
pendent samples in Rp, where X1, X2, . . . , Xn0

come from
population Π0 and Xn0+1, Xn0+2, ... , Xn0+n1

coming from
population Π1, with p being the dimensionality of each sam-
ple. Population Πi is assumed to follow a univariate Gaussian
distribution N(µi, σ

2
i ), for i = 0, 1. In general, Linear Dis-

criminant Analysis (LDA) utilizes the Anderson W statistic

W (X̄0, X̄1, X)=

(
X − X̄0 + X̄1

2

)T
Σ̂
−1(

X̄0 − X̄1
)
,

(1)
where X̄0 = 1

n0

∑n0

i=1Xi and X̄1 = 1
n1

∑n0+n1

i=n0+1Xi are
the sample means for each class and Σ̂ is the pooled estimate
of the covariance matrix, which is assumed to be common in
the LDA discriminant. Given X̄0 and X̄1, the designed LDA
classifier is given by

ψ(X) =

{
1 , if W (X̄0, X̄1, X) ≤ c
0 , if W (X̄0, X̄1, X) > c

, (2)
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with c being a constant. It is commonly assumed that c is zero,
which is the assumption we also make throughout this paper.
Therefore, the sign of W determines the classification of the
sample pointX . In the univariate model, Σ̂ reduces to σ̂2, and
(1) reduces to W (X̄0, X̄1, X) = 1

σ̂2 (X − X̄)
(
X̄0 − X̄1

)
.

Since σ̂2 ≥ 0 this reduce to

W (X̄0, X̄1, X) = (X − X̄)
(
X̄0 − X̄1

)
(3)

where X̄ = X̄0+X̄1

2 . Given the training data Sn (and thus X̄0

and X̄1), the classification error is given by

ε=P (W (X̄0, X̄1, X)≤0, X∈Π0|X̄0, X̄1)

+P (W (X̄0, X̄1, X)>0, X∈Π1|X̄0, X̄1)=α0ε
0+α1ε

1

(4)
where αi = P (X ∈ Πi) is the a priori mixing probability for
population Πi and εi is the error rate specific to population
Πi, with

εi=P ((−1)iW (X̄0, X̄1, X) ≤ 0|X ∈ Πi, X̄
0, X̄1). (5)

The first moment of the actual error is given by

E[ε]=

1∑
i=0

αiP ((−1)iW (X̄0, X̄1, X)≤0|X∈Πi) (6)

3. PERFORMANCE OF LDA CLASSIFIER IN
UNIVARIATE GAUSSIAN DEPENDENT SAMPLING

(UGDS) MODEL OF BINARY CLASSIFICATION

We now provide the mathematical framework to study LDA
true error in a stochastic setting, thereby allowing us to study,
for the first time, the effect of having non-i.i.d. data on LDA
performance.

Definition 1 : A process Xt = {Xt : t ∈ T} with
T being an ordered set, is called a Gaussian process if
any finite-dimensional vector [Xt1 , Xt2 , ..., Xtn ]T has the
multivariate normal distribution N(µt,Σt), where µt =
[E(Xt1), E(Xt2), ..., E(Xtn)] = [µ1, µ2, ..., µn] and Σt is
the covariance matrix dependent on T = [t1, t2, ..., tn]. For
the ease of notations we omit the subscript t from µt and Σt.

Definition 2 : We refer to the following sampling pro-
cedure as the Univariate Gaussian Dependent Sampling
(UGDS) Model of Binary Classification: Xi

t = {Xi
ti :

ti ∈ Ti}, with Ti being two ordered sets for i = 0, 1,
are two Gaussian processes such that any finite-dimensional
vector constructed by stacking the random variables of
Xi
ti as [X0

t01
, X0

t02
, ..., X0

t0n0

, X1
t11
, X1

t12
, ..., X1

t1n1

]T possesses

a multivariate normal distribution N(µ,Σ), where µ =
[µ0

1, µ
0
2, ..., µ

0
n0
, µ1

1, µ
1
2, ..., µ

1
n1

], and

Σ =

[
Σ00
n0×n0

Σ01
n0×n1

Σ10
n1×n0

Σ11
n1×n1

]
(7)

is a positive definite covariance matrix.

This model is univariate because both processes, X0
t0 and

X1
t1 , are collections of univariate random variables, not nec-

essarily with the same means or variances. X0
t0 and X1

t1 are
called class conditional processes. For ease of notations and
without loss of mathematical generality, we assume that T0

and T1 are the same set and, therefore, we omit the super-
script i from ti. Thus, henceforth we denote Xi

ti by Xi
t and

the stacked vector [X0
t01
, X0

t02
, ..., X0

t0n0

, X1
t11
, X1

t12
, ..., X1

t1n1

]T

by [X0
t1 , X

0
t2 , ..., X

0
tn0
, X1

t1 , X
1
t2 , ..., X

1
tn1

]T .

Employing LDA with the UGDS model instead of tradi-
tional independent sampling, the LDA rule becomes

W (X̄0
T , X̄

1
T , Xt)=

(
Xt−

X̄0
T + X̄1

T

2

)T
Σ̂
−1

T

(
X̄0
T−X̄1

T

)
,

(8)
where X̄0

T = 1
n0

∑n0

i=1X
0
ti and X̄1

t = 1
n1

∑n1

i=1X
1
ti are the

sample means for each class and Σ̂T is the common pooled
estimate of the covariance matrix of the classes. Similar to
(3), in the univariate case W reduces to

W (X̄0
T , X̄

1
T , Xt) = (Xt − X̄T )

(
X̄0
T − X̄1

T

)
, (9)

where X̄T =
X̄0
T+X̄1

T

2 . The designed LDA classifier is given
by

ψ(Xts) =

{
1 , if W (X̄0

T , X̄
1
T , Xts) ≤ 0

0 , if W (X̄0
T , X̄

1
T , Xts) > 0

. (10)

3.1. Stochastic true error and its moments

We denote a future test sample by Xi
ts , where i indicates the

class conditional process in which the sample is coming from,
i.e. either X0

t or X1
t . The auto-covariance sequence of Xi

ts
with the training data is defined as

ρiks (j) = E[(Xi
ts−µ

i
s)(X

k
tj−µ

k
j )], i, k = 0, 1, j = 1, 2, ..., nk

(11)
where ρiks (j) is the jth element of the sequence ρiks . Since
Xi
ts is a future sample, we assume 2 ≤ max{n0, n1} < s,

unless otherwise stated. Throughout the paper, we use SA to
denote the sum of all elements of a matrix or vector A. For
instance, Sρiks =

∑ni
j=1 ρ

ik
s (j).

The true classifier error under the UGDS model is a func-
tion of ts. Sample points at ts can come from either processes
and the classifier may misclassify any of these. Hence,

εts = α0
ts ε

0
ts + α1

ts ε
1
ts . (12)

where αits = P (Xts ∈ Xi
t), i = 0, 1, is the a priori mixing

probability of the two processes X0
t and X1

t at ts and εits is
the error rate specific to each process, with

εits =P ((−1)iW (X̄0
T , X̄

1
T , Xts) ≤ 0|X̄0

T ,X̄
1
T ,Xts ∈Xi

t)
(13)
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By replacing W (X̄0
T , X̄

1
T , Xts) with any proper statistic used

in other classifiers, this stochastic definition of true error ap-
plies to other rules. The expected performance of true error is
also specific to ts and is then defined to be:

E[εts ]=

1∑
i=0

αitsP ((−1)iW (X̄0
T ,X̄

1
T ,Xts)≤0|Xts∈Xi

t)

3.2. Expected performance of LDA in UGDS model

The first moment of the classification error for LDA under the
UGDS model is expressed exactly according to the following
theorem, where Z = (z1, z2)T < 0 means z1 < 0, z2 < 0.

Theorem 1 Under UGDS model, the expected true error of
LDA at ts is

E[εDts,n0+n1
] = α0

ts

[
P (Z I

s < 0) + P (Z I
s ≥ 0)

]
+ α1

ts

[
P (Z II

s < 0) + P (Z II
s ≥ 0)

]
,

(14)

where Z I
ts and Z II

ts are Gaussian bivariate vectors with:

µZI
s

=
[
µ0
s−

µ̄
2 −µ′

]T
, µZII

s
=
[
µ1
s−

µ̄
2 µ′

]T
ΣZI

s
=[

(σ0
s)2−

S
ρ00s
n0
−
S
ρ01s
n1

+
S
Σ00

4n2
0

+
S
Σ11

4n2
1

+
S
Σ01

2n0n1

−S
ρ00s
n0

+
S
ρ01s
n1

+
S
Σ00

2n2
0
−SΣ11

2n2
1

.
S
Σ00

n2
0

+
S
Σ11

n2
1
− 2S

Σ01

n0n1

]
ΣZII

s
=[

(σ1
s)2−

S
ρ11s
n1
−
S
ρ10s
n0

+
S
Σ00

4n2
0

+
S
Σ11

4n2
1

+
S
Σ01

2n0n1

−S
ρ11s
n1

+
S
ρ10s
n0
−SΣ00

2n2
0

+
S
Σ11

2n2
1

.
S
Σ00

n2
0

+
S
Σ11

n2
1
− 2S

Σ01

n0n1

]
(15)

where µ̄ =
∑n0
i=1 µ

0
i

n0
+

∑n1
i=1 µ

1
i

n1
, µ′ =

∑n0
i=1 µ

0
i

n0
−

∑n1
i=1 µ

1
i

n1
,

and µis and (σis)
2 are the mean and variance of random vari-

ables at ts from class i, i = 0, 1, with the auto-covariance ρiks
defined as in (11).

Proof. From (9), it follows that

E[ε0ts ] = P (W (X̄0
T , X̄

1
T , Xts) ≤ 0|Xts ∈ X0

t ) =

P (Xts−X̄T <0,X̄0
T−X̄

1
T >0)+P (Xts−X̄T ≥0,X̄0

T−X̄
1
T <0)

where X̄T =
X̄0
T+X̄1

T

2 . Expanding X̄0
T and X̄1

T as 1
n0

∑n0

i=1X
0
ti

and 1
n1

∑n1

i=1X
1
ti results in

E[ε0ts ] = P (Z I
s < 0) + P (Z I

s ≥ 0) (16)

whereZ I
s=AY 0

s , and Y 0
s =[X0

ts , . . . , X
0
tn0
, X1

t1 , . . . , X
1
tn1

]T ,
where the super index 0 in X0

ts is to denote explicitly
Xts ∈ X0

t , and

A=

[
1 −1

2n0

−1
2n0

. . . −1
2n0

−1
2n1

. . . −1
2n1

0 −1
n0

−1
n0

. . . −1
n0

1
n1

. . . 1
n1

]
(17)

Therefore, Z I
s is a Gaussian random vector with mean AµY 0

s

and covariance matrix AΣY 0
s
AT . Plugging in the values of

µY 0
s

= [µ0
s, µ

0
1, µ

0
2, ..., µ

0
n0
, µ1

1, ..., µ
1
n1

] and noting the fact
that the jth element of vector ρiks is defined as ρiks (j) =
E[(Xi

ts − µis)(X
k
tj − µkj )], i, k = 0, 1, j = 1, 2, ..., nk,

leads to the expression stated in Theorem 1. Evaluating
the mean and covariance matrix of vector Z II

s , which is the
counterpart for E[ε1ts ] is entirely similar, by considering
P (W (X̄0

T , X̄
1
T , Xts) > 0|X̄0

T , X̄
1
T , Xts ∈ X1

t ).�

As an application of Theorem 1, we assume that the train-
ing data of the two classes are taken separately from two in-
dependent autoregressive models of first order, AR(1), as fol-
lows:

Xi
t = ci + ψiX

i
t−1 + Zit , i = 0, 1 (18)

where ψi is a constants such that 0 < |ψi| < 1, i = 0, 1, and
Z0
t ∼ N(0, σ2

0) and Z1
t ∼ N(0, σ2

1) for all t and are indepen-
dent from each other. Then X0

t = {X0
t : 0 < t < ∞} and

X1
t = {X1

t : 0 < t < ∞} are two independent covariance-
stationary processes and we have the following theorem.

Theorem 2 Let X0
t , X1

t in the UGDS model be defined by
the two independent covariance-stationary AR(1) processes
as defined in (18). Then the expected true error of LDA con-
structed using the training samples [X0

t1 , X
0
t2 , ..., X

0
tn0

] and
[X1

t1 , X
1
t2 , ..., X

1
tn1

] at ts, where max{n0, n1} < s, is

E[ε
AR(1)
ts,n0+n1

] = α0
ts

[
P (Z I

s < 0) + P (Z I
s ≥ 0)

]
+ α1

ts

[
P (Z II

s < 0) + P (Z II
s ≥ 0)

]
,

(19)

where Z I
ts and Z II

ts are Gaussian bivariate vectors with

µZI
s

=
[
µ
2
−µ
]T
, µZII

s
=
[
−µ
2

µ
]T

ΣZI
s

=

 σ2
0

1−ψ2
0
−
S
ρ00s
n0

+
S
Σ00

4n2
0

+
S
Σ11

4n2
1

−S
ρ00s
n0

+
S
Σ00

2n2
0
− S

Σ11

2n2
1

.
S
Σ00

n2
0

+
S
Σ11

n2
1


ΣZII

s
=

 σ2
1

1−ψ2
1
−
S
ρ11s
n1

+
S
Σ00

4n2
0

+
S
Σ11

4n2
1

−S
ρ11s
n1
− S

Σ00

2n2
0

+
S
Σ11

2n2
1

.
S
Σ00

n2
0

+
S
Σ11

n2
1


(20)

where

µ =
c0

1− ψ0
− c1

1− ψ1
, Sρiis =

ψ
(s−ni)
i σ2

i

1− ψ2
i

(
1− ψnii
1− ψi

)
,

SΣii =
σ2
i

(1− ψ2
i )(1− ψi)

[
ni(1 + ψi)− 2ψi

(
1− ψnii
1− ψi

)]
.

(21)

Proof. Since theZit ’s are Gaussian,X0
t andX1

t are covariance-
stationary [9] and the vectors X0

n0
= [X0

t1 , X
0
t2 , ..., Xtn0

]T

and X0
n0

= [X1
t1 , X

1
t2 , ..., X

1
tn1

]T are distributed normally as
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Xi
ni ∼ N(µi,Σi), i = 0, 1:

µi = [µi, µi, ..., µi]T1×ni ,Σ
i(k, l) =

ψ
|k−l|
i

1− ψ2
i

σ2
i ,

ρiis (k) =
ψs−ki

1− ψ2
i

σ2
i , ρ

01
s = 01×n1

, ρ10
s = 01×n0

,

(22)

where k, l = 1, 2, ..., ni, µi = ci
1−ψi , and Σi(k, l) denotes the

entry in the kth row and lth column of matrix Σi. The result
follows by replacing (22) in Theorem 1. �

4. NUMERICAL EXAMPLE

Experiment 1: In this experiment, we consider the data are
generated by the first order autoregressive model defined in
(18). We assume α0

ts = α1
ts , n0 = n1 = n, σ0 = σ1 = 1, and

ψ0 = ψ1 = ψ ∈ [−0.95, 0.95]. We consider various cases
where c0 = 0.5, 0.75, 1, 1.5 with c0 = −c1. Figure 1 shows
the exact expectation of LDA true error constructed on the
data coming from such experiment. These results are exact
and are calculated from Theorem 2. The figure suggests that
increasing ψ decreases E[ε

AR(1)ψ
ts,2n

] and therefore, E[ε
AR(1)ψ
ts,2n

]
seems to be a decreasing function of ψ in this experiment.
Furthermore, the figure suggests that E[ε

AR(1)ψ
ts,2n

] < E[εIts,2n]

for 0 < ψ < 1 and E[ε
AR(1)ψ
ts,2n

] > E[εIts,2n] for 0 < ψ < 1,

in which E[εIts,2n] = E[ε
AR(1)ψ=0

ts,2n
], i.e. E[εIts,2n] is LDA

expected error where we have independent data. Currently,
we are analytically investigating the behavior of E[ε

AR(1)ψ
ts,2n

]
as a function of ψ.

Fig. 1. Exact expectation of LDA true error of the first-order
autoregressive model in the Experiment as a function of ψ :=
ψ0 = ψ1 for n0 = n1 = 25 and s − n0 = 10; Plot keys:
solid := c0 = 1.5; dash := c0 = 1; dot := c0 = 0.75;
dash-dot := c0 = 0.5. The cross section of each curve with
the vertical solid line in each plot shows the magnitude of the
expectation for i.i.d sampling situation for the corresponding
scenario.

Experiment 2: This experiment is an example derived
from gene-expression data used in studying the prognosis

of breast-cancer using 70 genes with high prognostic ability
[10]. Following [11], we divide the 307 individuals used
in this study into 64 “poor” prognosis (class 0) versus 243
“good” prognosis (class 1) patients. The gene expression
data used in this study have been collected by triplicating
each gene on each microarray and then duplicating each
measurement by dye-swaping. Therefore, for each patient,
each gene, we have six measurements, three of which are
positively correlated with themselves and negatively cor-
related with others. We consider a scenario in which the
experimenter is only given six measurements taken from one
patient from class 0 and six measurements from another pa-
tient from class 1, and a univariate LDA classifier is desired
to differentiate the two groups using ALDH4 gene, which
has the highest correlation with prognosis of breast cancer
[11]. Therefore, in this scenario, the experimenter is given
12 “technical” replicates in total, which are now treated as
our “sample points”. To verify the Gaussianity of each of
the 12 random variables that are used in this example, i.e.
[X0

t1 , X
0
t2 , ..., X

0
t6 , X

1
t1 , X

1
t2 , ..., X

1
t6 ]T , a Shapiro-Wilk test

is applied on the full dataset corresponding to each random
variable. This test did not reject Gaussianity of the random
variables over either of the classes at a 95% significance
level after employing the Bonferroni correction of multi-
hypothesis tests. Sample means, variances, and correlation,
computed on the full dataset, were used as estimates of the
unknown true means, variances, and the correlation structure
between samples needed in Theorem 1. Using Theorem 1, the
expected performance of a classifier, E[εDts,12], to differen-
tiate samples distributed as X0

t5 from samples distributed as
X1
t1 is 0.475. To practically investigate this expected perfor-

mance, we construct a classifier on each possible combination
among 243 × 64 = 15552 combinations of 6 samples from
either classes and each time we test the accuracy of the de-
signed classifier on the 64 − 1 = 63 remaining realizations
of X0

t5 and 243− 1 = 242 realizations of X1
t1 . The accuracy

computed in this way is 0.479, which is almost the same as
what is computed from Theorem 1. On the other hand, if
in this experiment one ignores the correlation structure be-
tween samples, then from Theorem 1 in [3], the expected
performance of LDA seems to be 0.374, which is not correct.

5. CONCLUSION

In many applications, the assumption of having i.i.d. train-
ing samples is violated. This paper characterizes, for the
first time, the exact performance of univariate LDA classifi-
cation in situations that the data are not independent or iden-
tically distributed. We achieved this by considering LDA in
a stochastic setting in which the samples are taken from two
class conditional Gaussian processes, which are not necessar-
ily independent. The results show that the correlation struc-
ture of data can be either beneficial or detrimental in terms of
classification performance.
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