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ABSTRACT
Sparse representation provides an efficient description for
high-dimensional Hyperspectral Imagery (HSI) and also en-
codes discriminative information useful for classification.
However, due to the large size of typical HSI images, the
naive way to construct a dictionary with all training pix-
els is neither efficient nor practical. In this paper, a novel
approach is proposed to design compact dictionary for S-
parse Representation-based Classification (SRC). Inspired
by Learning Vector Quantization (LVQ) techniques, we use a
hinge loss function directly related to classification task as our
objective function, and optimize the dictionary by exploiting
the differentiable parts of sparse codes. The resultant dictio-
nary updating procedure adapts the “push” and “pull” actions
in LVQ to SRC, which is therefore named as Learning Sparse
Representation-based Classification (LSRC). Experiments on
different HSI images demonstrate that our LSRC approach
can achieve higher classification accuracy with substantially
smaller dictionary size than using the whole training set, and
also outperforms existing dictionary learning methods.

Index Terms— sparse representation, learning vector
quantization, hyperspectral image classification

1. INTRODUCTION

Hyperspectral Imagery (HSI) is an important tool in remote
sensing which can measure distinct spectral signatures for
different ground materials, and it is widely applied in agri-
culture, military, mineralogy, etc. Different approaches have
been used to classify HSI data; successful examples include
Support Vector Machine (SVM) [1] and its variations [2, 3].

More recently, Sparse Representation-based Classifica-
tion (SRC) [4] has also been applied to HSI classification,
and achieves competitive results [5]. Sparse representation
expresses a signal as the linear combination of very few atom-
s from an over-complete dictionary, and the resulting sparse
code can reveal its class information if signals from different
classes lie in different subspaces. The effectiveness of SRC
has already been proven in face recognition [4], expression
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recognition [6], and speaker verification [7]. Good perfor-
mance on HSI classification is also expected because the high
correlation among different channels of HSI image intrinsi-
cally induces a low dimensional subspace in which samples
can sparsely be represented.

A good dictionary characterizing the subspace structure of
each class is the key for SRC to attain high classification accu-
racy. Conventionally, SRC dictionary is constructed by direct-
ly combining all the training samples [4, 5], which is neither
efficient nor practical for HSI data with huge number of data
samples. Random sampling or clustering methods can give
compact dictionaries, but generative as well as discriminative
capabilities are lost in such sub-optimal dictionaries. There
has been a hot trend lately in computer vision and machine
learning communities trying to learn condensed dictionaries
well fitted to large scale training data. Generative approach-
es, such as Method of Optimal Direction (MOD) [8], K-SVD
[9, 10], and the relaxed l1 formulations [11, 12], have focused
on minimizing signal reconstruction errors. For better perfor-
mance on classification, discrimination costs have also been
incorporated in a supervised manner [13, 14, 15], and clas-
sification models other than SRC have been used with sparse
codes as inputs [16, 17, 18, 19, 20, 21]. However, the discrim-
ination metrics used in existing methods are not geared to the
mechanism of SRC, and the employment of an extra classi-
fication model leads to more parameters which increase the
risk of over-fitting and break the unified framework of SRC.

In this paper, a new dictionary learning algorithm is pro-
posed particularly for the purpose of classification with SRC.
We optimize the dictionary by minimizing the hinge loss
of residual difference between competing classes, which is
inspired by the idea behind Learning Vector Quantization
(LVQ) [22]. LVQ techniques were first applied to dictionary
learning by Chen et al. [23] in an ad-hoc way; while here
we adapt the philosophy of LVQ to SRC in a more principled
manner (as formulated in Section 2), and hence name the
algorithm as Learning Sparse Representation-based Classifi-
cation (LSRC). Stochastic gradient descent is used in LSRC
to circumvent the non-differentiable part of sparse code, and
leads to updating rules (derived in Section 3) mimicking the
“push” and “pull” actions of LVQ. Superior classification
results are achieved using the proposed LSRC algorithm on
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several HSI images (reported in the experiments in Section
4). We also discuss our contributions related to prior works
(in Section 5) and draw concluding remarks (in Section 6).

2. PROBLEM FORMULATION

2.1. Sparse Representation-based Classification

Suppose we have a data set containing N labeled HSI pix-
els of m channels coming from C classes: {xi, yi}i=1...N ,
xi ∈ Rm, yi ∈ {1, ..., C}. A dictionary D ∈ Rm×n of size n
used in SRC [4] is composed of C class-wise sub-dictionaries
Dc ∈ Rm× n

C such that D =
[
D1, ...,DC

]
. The sparse code

αi ∈ Rn for pixel xi can be recovered by solving the follow-
ing l1 regularized problem as in compressive sensing [24]:

αi = argmin
z
||Dz− xi||22 + λ|z|1, with λ > 0. (1)

The sparse code can be decomposed into C sub-codes in a
similar way: αi =

[
α1

i ; ...;α
C
i

]
. SRC makes classification

decision based on the residual of signal approximated by sub-
code of each class: rci = ||eci ||2, where eci = xi −Dcαc

i is
the class-wise reconstruction error. The predicted class label
is obtained as

ŷi = argmin
c

rci . (2)

Generally, our goal is to find an optimal dictionary D∗

that achieves the best classification on the data set:

D∗ = arg min
D∈D

1

N

∑
i

I(ŷi ̸= yi), (3)

where I(·) is the indicator function, andD is the matrix space
with unit-length columns.

2.2. Objective Function with Insight from LVQ

Although closely related to our task of classification, Eq. (3)
cannot be solved directly. A recent work in [23] applied the
LVQ technique to learn the dictionary for SRC, which mo-
tivated us to design a more appropriative objective function
based on the insight from LVQ.

LVQ [22] is a supervised learning algorithm which gen-
erates a codebook optimized for a prototype-based classifi-
er. In testing, LVQ classifies a sample with the same label as
the closest prototype in the codebook to it, which is essen-
tially the same as the nearest neighbor classification. Dur-
ing training, LVQ (in its simplest version) iteratively goes
through each training sample xi and moves its nearest proto-
type mn(i) towards or away from xi based on whether mn(i)

belongs to the same class as xi:

mn(i) ←
{

mn(i) + ρ(xi −mn(i)), if mn(i) has label yi
mn(i) − ρ(xi −mn(i)), otherwise

(4)
where 0 < ρ < 1 is a monotonically decreasing step size.

LVQ shares a common spirit with the SRC in several
ways. Both of them represent data samples with a subset of
elements in codebook or dictionary, and classify the samples
based on the energy distribution in the selected prototypes or
atoms. This justifies the attempt in [23] to use updating rules
similar to Eq. (4) in learning dictionary for SRC. However,
the underlying principles of sparse coding and vector quan-
tization are quite different, which makes the performance of
the ad-hoc approach in [23] unguaranteed.

A deeper insight into LVQ has been developed in [25]
which regards the learning procedure as a scholastic gradient
descent algorithm with a loss function defined on any mis-
classified sample xi:

LLV Q(xi, yi) ∝ ||xi −m+
n(i)||

2 − ||xi −m−
n(i)||

2, (5)

where m+
n(i) and m−

n(i) are the nearest prototypes to xi with
label yi and other than yi, respectively. We adopt an objec-
tive function with a similar form as in Eq. (5) with the hope
that the merits of LVQ can be exploited in building an SRC
dictionary. Specifically, a hinge loss function is enforced on
each data point:

LLSRC(xi, yi;D) = max(0, ryi

i − rĉii + b), (6)

where
ĉi = arg min

c∈{1,...,C}\yi

rci (7)

is the most competitive class in reconstructing the signal ex-
cluding the true class yi. b is a non-negative parameter con-
trolling the “margin” between the classes. The loss function
in Eq. (6) is zero when the residual of true class is smaller
than any other class by at least an amount of b. Otherwise, it
gives a penalty proportional to the residual difference between
the true class and the most competitive “imposter” class. Intu-
itively, this loss function is also related to the misclassification
rate of SRC. Thus, we can formulate the problem of LSRC as:

D∗ = arg min
D∈D

1

N

∑
i

LLSRC(xi, yi;D). (8)

3. DICTIONARY OPTIMIZATION

Since the sample size N is usually large, stochastic gradien-
t descent methods are favored to optimize a dictionary on-
line when the objective function is an expectation over all the
training samples [12]. The dictionary is first initialized with
a reasonable guess D0 (through K-means or an unsupervised
training for each class), and then it is updated iteratively by
going through the whole data set multiple epochs until conver-
gence. In the t-th iteration, a single sample (xi, yi)

1 is drawn
from the data set randomly and the dictionary is updated in
the gradient direction of its cost term:

Dt = Dt−1 − ρt∇DLLSRC(x, y;D
t−1), (9)

1For simplicity, we drop all the data indices i hereafter.
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where ρt = ρ0√
(t−1)/N+1

is the step size at iteration t with

initial value ρ0. The gradient of hinge loss is

∇DL(x, y;D) = ∇Dry−∇Drĉ, if ry−rĉ+b > 0, (10)

and zero or undefined otherwise. We can ignore the case of
undefined gradient, because it occurs with very low probabil-
ity in practice (only when ry − rĉ + b = 0) and thus will not
affect the convergence of stochastic gradient descent as long
as a suitable step size is chosen [25].

To evaluate the gradient of rc for a particular class c, we
first find its derivative with respect to the (i, j)-th element of
D as

∂rc

∂dij
= −2ecT ∂DPcα

∂dij

= −2ecT
[
Pc(j, j)αjui +DPc

∂α

∂dij

]
, (11)

where Pc is a n × n diagonal matrix with 1 at positions cor-
responding to class c and 0 otherwise, and ui is a m× 1 unit
column vector with the i-th element equal to 1.

The sparse code α is an implicit function of D, and it has
been shown differentiable [20, 26] with respect to any dictio-
nary atom dj with index j in the active set Λ = {j|αj ̸= 0}.
For the other atoms, the gradient is zero with overwhelming
probability and thus can be ignored for the same reason men-
tioned above. Directly using the result given in [26], we can
find the sparse code derivative as:

∂αΛ

∂DΛ
= −A−1 ∂[D

T
Λ(DΛαΛ − x)]

∂DΛ
, (12)

where αΛ and DΛ denote the sparse coefficients and dictio-
nary columns corresponding to the active set Λ. A = DT

ΛDΛ,
and in practice we set A = DT

ΛDΛ+ ϵ · I to ensure the stabil-
ity of the inverse of A, where ϵ is a small positive constant. It
is then easy to obtain for any j ∈ Λ:

∂α

∂dij
= PΛ[A

−1(:,Λ−1(j)) · ei −A−1DT
Λ(i, :) · αj ], (13)

where PΛ ∈ Rn×|Λ|, PΛ(j, k) = I(j = Λ(k)), Λ(k) denotes
the k-th element of Λ sorted in ascending order, Λ−1(·) is the
inverse function of Λ(·), and e = x−Dα = x−DΛαΛ.

Combining all the equations above and after some manip-
ulations, we get the gradient of rc with respect to the j-th
dictionary atom for any j ∈ Λ:

∇djr
c = −2αjI(cls(j) = c) ·ec−2βc

Λ−1(j) ·e+2αjDΛβ
c,

(14)
where cls(j) is the class label for j-th dictionary atom, and
βc = A−1PT

ΛPcD
Tec. Thus, the update for each atom in

the active set Λ is:

∆dt
j = dt

j − dt−1
j

= 2ρt
[
αjI(cls(j)=y)·ey−αjI(cls(j)=ĉ)·eĉ

+(βy
Λ−1(j)−β

ĉ
Λ−1(j))·e−αjDΛ(β

y−βĉ)
]
.(15)

Algorithm 1 Dictionary learning with LSRC
Require: labeled data set S = {xi, yi}, sparse regularization

coefficient λ, margin b
Ensure: dictionary D

1: initialize D
2: set t = 1
3: while not converge do
4: randomly permute data set S
5: for each (x, y) ∈ S do
6: find sparse code α with Eq. (1)
7: find rc = ||x−Dcαc||2 for any c = 1...C
8: find ĉ with Eq. (7)
9: if ry − rĉ + b > 0 then

10: dj ← dj +∆dj for any j ∈ Λ by Eq. (15)
11: dj ← dj/||dj || for any j ∈ Λ
12: end if
13: t← t+ 1
14: end for
15: end while
16: return D

The resultant dictionary atoms are projected to unit length to
ensure D ∈ D. The overall method of LSRC is summarized
in Algorithm 1. The first two terms in Eq. (15) have the ef-
fects of “pulling” the active dictionary atoms of correct class
towards the signal, and “pushing” the active dictionary atom-
s of the most competitive wrong class away from the signal,
which is similar to what has been done in [23] to mimic the
procedure used in the LVQ. The third and fourth terms in Eq.
(15) are unique in our LSRC method. They bring the overall
reconstruction error and every active atom as ingredients for
dictionary updating, which makes sense as the sparse code is
jointly determined by all the atoms in the active set.

4. EXPERIMENTAL RESULTS

We test the proposed method on three benchmark HSI images:
the Indian Pines [27], the University of Pavia, and the Center
of Pavia [28]. The experiments setup and classification ac-
curacies are listed in Table 1. We compare the performance
of SRC with dictionaries obtained from the full training set
(“Full”) [5], the K-means clustering (“K-means”), the unsu-
pervised training (“Unsup ”) [12] 2, the ad-hoc LVQ approach
(“LVQ”) [23], and our method (“LSRC”). Accuracies are also
reported for the SVM classifiers with a linear kernel (“SVM”)
and an RBF-kernel (“KSVM”), the later of which is known to
give the state-of-the-art results on high dimensional HSI data
[2]. We follow the same way as in [5] in pre-processing the
multi-band features. Since our focus is dictionary learning,
all the results shown are based on pixel-wise classification.
Our learned dictionaries have a small size of only 5 atoms per

2Our dictionary is not as good as the one learned in [12] in terms of sparse
reconstruction, but it gives more discriminative sparse codes for SRC.
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Table 1. Experiment settings and classification accuracies (%) on three HSI images.
Image #class #train/test Parameters Metric Full K-means Unsup LVQ LSRC SVM KSVM
Indian
Pines

(200 bands)
16

1043 /
9323

120 iterations,
ρ0 = 0.01,

λ = 0.1, b = 0.2

OA 82.96 69.87 66.41 75.39 83.84 74.44 84.52
AA 76.66 72.11 67.59 73.97 77.69 65.49 79.24
κ 0.805 0.662 0.624 0.723 0.816 0.708 0.823

University
of Pavia

(103 bands)
9 3921 /

40002

10 iterations,
ρ0 = 0.001,

λ = 0.05, b = 0.3

OA 78.31 68.01 64.57 73.24 81.08 67.28 79.15
AA 86.78 77.05 71.66 82.91 85.26 79.66 87.66
κ 0.726 0.596 0.549 0.666 0.754 0.599 0.737

Center of
Pavia

(102 bands)
9

5536 /
97940

20 iterations,
ρ0 = 0.001,

λ = 0.1, b = 0.3

OA 97.45 95.86 95.91 96.85 97.93 95.68 96.13
AA 95.41 91.35 91.95 93.93 96.11 93.77 85.29
κ 0.954 0.925 0.926 0.943 0.962 0.923 0.928
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Fig. 1. Accuracies change during training iterations for both
“LVQ” and “LSRC” on the Indian Pines image.

class – a great reduction compared with the full training set
used in the models of “Full” and “KSVM”, yet the overall ac-
curacy (OA), class-averaged accuracy (AA) and κ coefficient
[29] achieved by LSRC are higher than using the “Full” set
and other dictionary learning methods. Although built on lin-
ear input space, our method attains better performance than
the nonlinear “KSVM” except for the small Indian Pines data
set, on which SVM shows a better generalization capability.

Fig. 1 demonstrates that our learning algorithm effective-
ly reduces both training and test errors during training, and
converges to much higher accuracies than “LVQ”. The label-
s of the Indian Pines image predicted using the “LVQ” and
“LSRC” methods are also given in Fig. 2 for comparison.

The effect of tuning margin parameter b is examined in
Table 2. A too small value of b leads to over-fitting to train-
ing set, while a too large value leads to bias of classification
objective. A proper value of b is determined using part of
training data as a validation set.

5. RELATION TO PRIOR WORK

The work presented here follows the classical framework of
SRC proposed by Wright et al [4], and focuses on the less
investigated problem of learning a dictionary well suited for

(a) “LVQ” (b) “LSRC”

Fig. 2. Classification results on the Indian Pines image. Color
encodes true labels, and black dots denote misclassification.

Table 2. Effect of parameter b on the Indian Pines image.
b 0.0 0.1 0.2 0.3 0.4

Train Acc. (%) 99.81 99.14 98.85 98.27 97.60
Test Acc. (%) 81.30 83.51 83.84 83.19 82.88

SRC on HSI data. We take advantage of the underlying prin-
ciple of Kohonen’s LVQ [22] algorithm and adapt it to the
dictionary design for SRC, leading to a novel LSRC algo-
rithm which is more sound theoretically and more effective
experimentally than the ad-hoc combination done previously
by Chen et al [23].

6. CONCLUSION

A new dictionary design method for HSI classification is pro-
posed by optimizing a hinge loss function sharing the same
spirit with LVQ. Our stochastic gradient decent-based algo-
rithm mimics the updating rule of LVQ, but performs sub-
stantially better than the ad-hoc adaptation of LVQ as well
as other existing dictionary learning approaches. Classifica-
tion results achieved with the obtained compact dictionaries
on three HSI images are comparable to or better than the ker-
nel SVM-based classifier. In future work, we will incorporate
spatial information into the current classification framework
and apply our method to other image modalities.
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