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ABSTRACT

Many current multiclass classification approaches can be de-
scribed by a set of discriminant functions, where the label of
the class with the largest discriminant function is chosen as
the best prediction. We develop an affine transform called
maximum discriminant margin (MDM), which can use in-
dependently estimated discriminant functions to solve mul-
ticlass classification problems.

Index Terms— Multiclass classification, Discriminant
functions, Maximal margin, Cutting planes

1. INTRODUCTION

In this paper we examine the problem of multiclass classifi-
cation. The task is to estimate an unknown class label ω ∈ Ω
out of K possible classes Ω = {1, . . . ,K} based on an ob-
served sample x. A framework used by many current classi-
fiers, such as neural network, support vector machine (SVM)
and Bayes-plug-in classifier, is to deriveK discriminant func-
tions f1(x), . . . , fK(x) using a training set containing both
the measured features x(i) and true class labels y(i). The dis-
criminant function fk(x) is large if the sample x belongs to
class i and small otherwise. This results in the decision rule

ω̂(x) = arg max
k∈Ω

fk(x). (1)

The common approach in machine learning is to estimate the
K discriminant functions fk jointly. For example, neural net-
works with K output neurons for fk are often trained using
the back-propagation algorithm, see [1]. Since the original
SVM [2] only solves a binary classification problem, a num-
ber of different extensions were proposed to solve the multi-
class problem, see [3–5] for a comparison. A well known ap-
proach is the one-vs-one approach. Here theK-class problem
is solved by training 1

2K(K−1) binary SVMs on all possible
pairs of classes, and the values of the discriminant functions
fk are given by the number of times class k is chosen among
all binary classifications.

Other approaches do not estimate the K discriminant
functions together, rather each discriminant function fk is
estimated on its own. For this to work, the different fk have
to share a common scale. Approaches of this group are the
Bayes-plug-in classifiers. They estimate the probabilistic
model for each class independently by assuming a certain
likelihood like a naive Bayes model or a Gaussian mixture

model (GMM). The discriminant function fk is then deter-
mined by the likelihood and a priori probability of the class.
Because these discriminant functions are all derived using the
Bayes theory, they share the common probabilistic scale and
are therefore still directly comparable.

However, some approaches do not have the advantage of
a probabilistic scale and rely on other ideas to find a common
scale. One example is the one-vs-all SVM approach, where
each fk is the discriminant function of a binary SVM which
considers the samples from class k as samples of the binary
class 1 and the samples from all K − 1 remaining classes as
samples of the binary class −1. The common scale in this
case is based on the implicit scaling of the SVM formulation.
This scaling ensures that all free support vectors xk,sv of all
K binary SVMs fk have the same the discriminant value of
|fk(xk,sv)| = 1. In practice this approach performs quite
well [5].

All methods considered to this point share some kind of
common scale for the discriminant functions. But in some ap-
proaches the fk may be estimated independently without any
common scale. For example, Sun and Huang [6] and Sachs
et al. [7] estimated the discriminant functions fk by training
a one-class SVM for each class independently. The used one-
class SVM searches for the smallest hypersphere enclosing
the samples in the Hilbert space induced by the kernel func-
tionK(xi,xj). This creates a discriminant function fk which
has a large value in regions with a high density of samples,
see [8] and [9]. However, if the derived fk do not share a
common scale, a direct comparison according to (1) is in gen-
eral difficult. Sun and Huang solved this problem by not using
fk directly. Instead they used these fk as inputs of a neural
network whose K output neurons should create a set of com-
parable discriminant functions f̃k.

In this paper, we examine the general problem of multi-
class classification based on K given discriminant functions
fk which have been estimated independently without a com-
mon scale.

2. DISCRIMINANT TRANSFORM

2.1. Basic idea

If the discriminant functions are estimated independently, it
may not be optimal to estimate the class using (1) directly. We
propose to transform each discriminant function prior to the
decision using a discriminant transform gk(x) = hk(fk(x)).
Finding general optimal transforms hk is a difficult problem.
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However, a solution can be found by only considering the set
of affine transforms

gk(x) = akfk(x) + bk, k = 1, . . . ,K (2)

with ak ≥ 0. The new decision rule is then

ω̂(x) = arg max
k∈Ω

gk(x). (3)

These transforms can compensate for different scales and off-
sets in the original discriminant functions fk. A training set
Sx = {(x(1), y(1)), . . . , (x(l), y(l))} is used to estimate the
unknown parameters ak and bk. For a simpler notation, the
new set Sf = {(f (1), y(1)), . . . , (f (l), y(l))} ∈

(
RK × Ω

)l
containing the discriminant values f (i) = [f1(x(i)), . . . ,
fK(x(i))]T is used.
Finding an optimal choice of ak and bk can be achieved by
considering the error rate of the training set. To correctly clas-
sify a sample f (i) of class k, the corresponding discriminant
function gk has to be the largest, i.e

akf
(i)
k + bk ≥ aqf (i)

q + bq, q 6= k. (4)

2.2. Maximum discriminant margin (MDM)

Under the assumption of a separable training set Sf , a good
choice for the unknown parameters ak and bk should max-
imize the difference between the correct discriminant value
gk and the next largest discriminant value. A similar idea
was explored by Crammer and Singer in [10] where they also
maximized the discriminant difference to estimate a continu-
ous error code matrix combining multiple binary SVMs with
different class assignments to solve the multiclass problem.
Following the above idea the problem can be stated as a lin-
ear program (LP)

max
a,b,γ

γ s.t. F (i)a+ S(i)b ≥ 1 γ, i = 1, . . . , l (5)

where a = [a1, . . . , aK ]T , b = [b1, . . . , bK ]T and F (i), S(i)

are matrices of dimension (K − 1) × K defined in the ap-
pendix A. γ > 0 is the discriminant margin. However, the
problem in (5) is unbounded as a scaling of γ with a positive
number is always possible by a scaling of a and b. Therefore,
further constraints are required to force a unique solution for
a and b. A natural choice is the range r of the transformed
discriminant functions gk, i.e.

r = max
i,k

gk(x(i))−min
i,k

gk(x(i)) (6)

= max
i,k

(
akf

(i)
k + bk

)
−min

i,k

(
akf

(i)
k + bk

)
.

As the affine transforms hk in (2) are monotonically increas-
ing, the maximum and minimum over the samples can be pre-
computed by fk,max = max

i
f

(i)
k and fk,min = min

i
f

(i)
k . Then

the range is

r = max
k

(akfk,max + bk)−min
q

(aqfq,min + bq)

= max
k,q

(akfk,max + bk − aqfq,min − bq)

= max (Fra+ Srb) ,

see appendix A for the definition of the K2 ×K matrices Fr
and Sr.
Instead of maximizing the margin γ, we now try to minimize
the range r while enforcing a constant margin γ = 1. To in-
corporate possible training errors for non-separable data, we
use the same approach as the soft-margin SVM. We introduce
a slack variable ξi ≥ 0 for each sample f (i). ξi > 0 means
that sample f (i) does not fulfill the original hard margin in-
equality with margin 1. The resulting LP is now given by

min
a,b,ξ,r

r +
C

l
1T ξ (7a)

s.t. F (i)a+ S(i)b ≥ 1 (1− ξi) , i = 1, . . . , l, (7b)
Fra+ Srb ≤ 1r, (7c)

a ≥ 0, (7d)
ξ ≥ 0 (7e)

with ξ = [ξ1, . . . , ξl]
T . The parameter C controls the trade-

off between minimizing the range r and the average value
of the slack variables 1

l 1
T ξ. Note that 1

l 1
T ξ also defines a

simple upper bound on the training error rate. The problem
(7) is bounded, but the solution for b is still not unique, as only
the differences bk − bq appear in the problem. Therefore, a
constant offset b̃ = b + c1 yields no change. Below b1 = 0
is assumed to enforce a unique solution.

3. ALGORITHM

The problem in (7) could be solved directly by many cur-
rent LP solvers. However, as the number of slack variables
and the number of constraints in (7b) and (7e) grow linearly
with the number of training samples l, an alternative formu-
lation which scales better for large datasets may be more ap-
propriate. Our algorithm to solve (7) is an adaption of the
cutting plane algorithm for solving a linear SVM proposed
by Joachims [11]. To apply the algorithm, we first move the
constraints (7b) and (7e) into a new risk function

R(a, b) =
1

l

l∑
i=1

ξi =
1

l

l∑
i=1

max

{
0,max

q
v(i)
q

}
(8)

with v(i) = 1 − F (i)a − S(i)b = [v
(i)
1 , . . . , v

(i)
K−1]T . The

risk R(a, b) is also called the hinge loss for the original SVM
problem. Then (7) can be reformulated to

min
a,b,r

r + C R(a, b) (9)

s.t. Fra+ Srb ≤ 1r,

a ≥ 0.
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This problem formulation only depends on the number of
classes K and is independent of the number of samples l.
However, the risk R(a, b) is nonlinear and not continuously
differentiable. This makes a direct optimization of (9) dif-
ficult. Instead, we solve a series of problems which lower
bound the original risk R(a, b) ≥ R̂t(a, b) by using a set of
cutting planes, i.e

R̂t(a, b) = max

{
0, max
i=1,...,t

(
pTi a+ qTi b+ ri

)}
, (10)

where pTi a + qTi b + ri are tangent hyperplanes of R(a, b)
given by

p = ∇aR(a, b) = −1

l

l∑
i=1

F (i)T c(i), (11)

q = ∇bR(a, b) = −1

l

l∑
i=1

S(i)T c(i), (12)

r = R(a, b)− pTa− qT b (13)

with c(i) = [c
(i)
1 , . . . , c

(i)
K−1]T and

c(i)q =


1 if v(i)

q = max

{
0,max

q′
v

(i)
q′

}
0 if v(i)

q < max

{
0,max

q′
v

(i)
q′

} . (14)

The LP derived from this lower bound is given by

min
a,b,ξcp,r

r + Cξcp (15)

s.t. Pta+Qtb+ rt ≤ 1ξcp,

Fra+ Srb ≤ 1r,

a ≥ 0,

ξcp ≥ 0,

where Pt = [p1, . . . ,pt]
T , Qt = [q1, . . . , qt]

T , rt =

[r1, . . . , rt]
T and ξcp = R̂t. At each iteration t of the al-

gorithm, we first solve (15) using the GLPK solver [12] and
then add a new tangent hyperplane at the current solution
ât, b̂t to the previous set of cutting planes. This creates a
series of monotonically increasing lower bounds R̂t(a, b) on
the original risk R(a, b). The algorithm terminates when the
lower bound R̂t(a, b) is sufficiently close to R(a, b), see Al-
gorithm 1. Sometimes the proposed algorithm may increase
the error rate on the given dataset, as it only minimizes an
upper bound. In this case we use the original discriminant
functions with â = 1 and b̂ = 0.

4. SIMULATION RESULTS

In the first experiment, we test our MDM transform with 20
setups of simulated data. In all setups, K = 8 classes with

Algorithm 1 Cutting Plane Algorithm

1: â0 = 1, b̂0 = 0, t = 0.
2: repeat
3: t← t+ 1
4: Compute a new cutting plane at ât−1, b̂t−1 with

pt = −
l∑
i=1

F (i)T c(i),

qt = −
l∑
i=1

S(i)T c(i),

rt = R(ât−1, b̂t−1)− pTt ât−1 − qTt b̂t−1.

5: Find ât, b̂t by solving (15).
6: until R(ât, b̂t)− R̂t(ât, b̂t) < εR̂t(ât, b̂t)

30 dimensional Gaussian likelihoods and equal class prob-
abilities are used. The mean and covariance matrix for the
class likelihoods are randomly drawn for each of the 20 se-
tups. To simulate label errors or outliers, the correct class
labels are randomly changed with a probability of 2%. In this
case, the optimum maximum a’posteriori discriminant func-
tions are known and given by the log-likelihoods log pk(x)
of the Gaussians. They can be precomputed and are used to
test the MDM. In order to simulate independently estimated
discriminant functions fk, we disturb each optimum discrim-
inant function by a random scaling and offset, i.e fk(x) =

ãk log pk(x) + b̃k. ãk is drawn from a uniform distribution in
[1, 9] and b̃k ∼ N (0, 100).
For each of the 20 setups, a total number of 50 independent
training sets, each with l = 200 samples, are generated. For
each training set, the MDM algorithm with C = 105 and
ε = 10−4 estimates the optimal transform coefficients ak and
bk. Finally, the generalization error rate for all 50 solutions
is computed using 104 previously unseen test samples. Table

MDM Percentiles
Bayes Raw 25th 50th 75th
2.08% 67.65% 2.33% 2.56% 3.21%
2.12% 36.15% 2.31% 2.38% 2.66%
9.24% 86.67% 10.19% 10.52% 10.79%
10.93% 87.17% 11.82% 12.10% 12.49%
11.96% 86.84% 13.17% 13.50% 13.87%

mean difference 0.67% 0.97% 1.58%

Table 1. Bayes error rate, raw error rate and error rate per-
centiles after MDM over 50 training sets for 5 exemplary se-
tups.

1 compares the Bayes error rate by using the optimum dis-
criminant functions log pk(x), the raw error rate by using the
randomly modified discriminant functions fk and the error
rate by using the corrected discriminant functions gk over the
50 training sets for 5 exemplary data setups of all 20 data se-
tups. The last row shows the mean difference between the
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Bayes error rate and the error rate after MDM over all 20 data
setups for the three given percentiles. Clearly, MDM is able
to compensate for individual scalings and offsets of indepen-
dently estimated discriminant functions and achieves almost
the optimum Bayes error rate.

The second experiment applies the MDM transform on
the datasets listed in Table 2. The dna and letter sets are from
the UCI [13], the satimage set from the StatLog Project and
for the usps dataset, see [14]. For all datasets the discriminant

#classes K #training #test #features
dna 3 2000 1186 180

letter 26 15000 5000 16
satimage 6 4435 2000 36

usps 10 7291 2007 256

Table 2. Datasets used in the second experiment with the
number of classes, training and test samples, and features.

functions fk are estimated by two different approaches. The
first approach estimates fk using the one-vs-all SVM and the
second approach uses a one-class SVM [8] for each class in-
dependently. Both SVM approaches use the radial basis func-
tion (rbf) kernelK(xi,xj) = exp

(
−γ‖xi − xj‖2

)
and 75%

of the training data to estimate the discriminant functions fk.
The MDM uses the remaining 25% of the training data to es-
timate the optimal transforms. The hyper-parameters for the
one-vs-all and one-class SVM are estimated by a grid search
minimizing the error rate on the 25% of the training data used
by MDM. The resulting generalization error rates on the test
set with and without MDM are shown in Table 3.

one-vs-all SVM one-class SVM
Raw MDM Raw MDM

dna 4.97% 4.97% 30.69% 7.08%
letter 2.60% 2.60% 5.48% 3.50%

satimage 8.15% 8.15% 13.35% 8.95%
usps 4.40% 4.40% 9.12% 4.90%

Table 3. Generalization error for all datasets without and with
using the MDM.

In the case of one-class SVM, MDM considerably reduces
the error rate for all datasets. The missing common scale for
the different one-class discriminant functions is successfully
restored by MDM. For one-vs-all SVM, MDM does not im-
prove the classification performance. One reason is that each
one-vs-all SVM uses samples of all classes. Therefore the bi-
nary SVMs are not truly independently estimated and can use
the samples of the other classes to find an implicit common
scale. Also Rifkin showed in [5] that one-vs-all SVM per-
forms well for many different problems. However, a closer
look at the error rates for different kernels shows that MDM
is able to improve the performance of the one-vs-all SVM
for narrower rbf (larger γ). This is shown in Figure 1 for
the usps dataset. The other datasets show a similar behavior.
One reason is that for larger γ SVM tends to overfitting and
the number of free support vectors grows. This also means
that the scaling based on these support vector is less reliable.
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one-class SVM: Raw
one-class SVM: MDM
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one-vs-all SVM: MDM

Fig. 1. Generalization error rates for different γ of the rbf
kernel for the usps dataset.

MDM is able to compensate for this overfitting effect, as it
uses samples previously unseen by the SVM training to esti-
mate the transform. In other words, MDM makes one-vs-all
SVM more robust against a bad choice of γ.

5. CONCLUSION

We introduced a new approach called MDM to transform a
set of discriminant functions. MDM can use independently
estimated discriminant functions to solve a multiclass clas-
sification problem by using a small set of labeled examples
to estimate an affine transform. The results show that MDM
can find a solution close to the Bayes error rate even for a
small number of labeled examples. Using this approach the
one-class classification approach could be improved for all
considered datasets by only increasing the classification com-
plexity by an additional multiplication and addition.

A. APPENDIX

F (i) and S(i) are created by removing the y(i)-th row of the
K ×K matrices F̃ (i) and S̃(i) given by

F̃ (i) =f
(i)

y(i)
1 eTy(i) − diag

(
f (i)

)
,

S̃(i) = 1 eTy(i) − I

where I is the K ×K identity matrix, ei is the i-th unit col-
umn vector and diag (.) creates a diagonal matrix using the
given vector as the diagonal elements.

The range matrices Fr and Sr are created by using all
K2 combinations of fk,max and fq,min with k, q = 1, . . . ,K.
Using the Kronecker tensor product ⊗, they are given by

Fr = diag (fmax)⊗ 1− 1⊗ diag (fmin) ,

Sr = I ⊗ 1− 1⊗ I

with fmin = [f1,min, . . . , fK,min]T and fmax = [f1,max, . . . ,
fK,max]T .
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