
PROXIMAL ALTERNATING-DIRECTION MESSAGE-PASSING
FOR MAP LP RELAXATION

Guoqiang Zhang and Richard Heusdens

Department of Intelligent Systems
Delft University of Technology

Delft, the Netherlands
Email: {g.zhang-1, r.heusdens}@tudelft.nl

ABSTRACT

Linear programming (LP) relaxation for MAP inference over (fac-

tor) graphic models is one of the fundamental problems in machine

learning. In this paper, we propose a new message-passing algo-

rithm for the MAP LP-relaxation by using the proximal alternating-

direction method of multipliers (PADMM). At each iteration, the

new algorithm performs two layers of optimization, that is node-

oriented optimization and factor-oriented optimization. On the other

hand, the recently proposed augmented primal LP (APLP) algo-

rithm, based on the ADMM, has to perform three layers of optimiza-

tion. Our algorithm simplifies the APLP algorithm by removing one

layer of optimization, thus reducing the computational complexities

and further accelerating the convergence rate. We refer to our new al-

gorithm as the proximal alternating-direction (PAD) algorithm. Ex-

perimental results confirm that the PAD algorithm indeed converges

faster than the APLP method.

Index Terms— graphic models, ADMM, PADMM, message-

passing, MAP, LP relaxation

1. INTRODUCTION

Graphic models are widely used to describe the statistics of a set

of discrete random variables. Such formulation nicely captures the

sparsity of the inter-dependencies of the variables, facilitating prob-

abilistic inferences via local message-passing over the graph. One

fundamental inference task is to find maximum a-posteriori (MAP)

assignment. For tree-structured graphs, it is well known that the

MAP solution can be easily computed by dynamic programming.

On the other hand, for more general graphs, the computation of the

MAP solution is known to be NP-hard.

In the literature, considerable attention has been devoted to ap-

proximate the MAP solution by solving a relaxed optimization prob-

lem. Due to its simplicity and effectiveness, linear programming

(LP) relaxation has become one of the most popular approximation

approaches [1, 2, 3, 4]). The research challenge is how to perform

local updates (or message-passing) efficiently between neighboring

nodes to reach the optimal solution of the LP relaxation.

In the past decade, various message-passing algorithms have

been proposed for solving MAP LP-relaxation. Some algorithms

perform block coordinate-descent operations, such as max-sum dif-

fusion (MSD) [2] and max product linear-programming (MPLP) [5]

algorithms. While these algorithms usually converge fast, they do

not always reach the global optimal solution of the LP-relaxation

[6]. To overcome the suboptimality issue, some algorithms perform

variants of subgradient descent to the dual problem [7, 8]. Although

these algorithms are guaranteed to converge globally, they typically

converge slower than the block coordinate-descent ones.
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Fig. 1. ADMM-based algorithms for solving MAP LP-relaxation.

The PAD algorithm is the new one we will present in this paper.

Recently, the alternating direction method of multipliers

(ADMM) [9, 10, 11, 12] has been employed in designing more effi-

cient and globally convergent message-passing algorithms for MAP

LP-relaxation [13, 14]. The work in [13] considered the primal

LP problem over graphs with binary-valued variables by using the

ADMM. The proposed message-passing algorithm (referred to as

DD-ADMM) in [13] performs two layers of optimization at each

iteration, which are node-oriented optimization and factor-oriented

optimization (see Fig. 1). In [14], Meshi and Globerson extended the

work of [13] by considering graphic models with multi-valued vari-

ables. The authors proposed two algorithms: the augmented primal

LP (APLP) method and the augmented dual LP (ADLP) method.

The key point in designing the above two algorithms was to intro-

duce a considerable number of auxiliary variables to enable the ap-

plication of ADMM. Further, both algorithms have to perform three

layers of optimization at each iteration (see Fig. 1). Compared with

the DD-ADMM algorithm, the APLP and ADLP algorithms require

one more layer of optimization due to the large number of auxil-

iary variables, increasing the computational complexities and further

slowing down the convergence speed.

In this paper, we reconsider solving the primal MAP LP-

relaxation over the graphs with multi-valued variables. We apply the

proximal ADMM (PADMM), which is a combination of ADMM

and proximal point approach [15]. Our primary motivation is to de-

sign a more efficient message-passing algorithm with fewer number

of auxiliary variables than that of [14].

Formally, in the design of the new PADMM-based algorithm,

we introduce feedback from last iteration in computing a new esti-

mate of the variables. The introduction of feedback signal makes it

possible to introduce a small number of auxiliary variables compared
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to [14]. Our main contribution is the nice construction of the feed-

back signal, which leads to simple computation of the estimate per

iteration. We refer to the new algorithm as the proximal alternating-

direction (PAD) algorithm. The PAD algorithm only performs two

layers of optimization per iteration due to the feedback signal (see

Fig. 1). The convergence of the PAD algorithm follows directly from

that of the PADMM [15, 12]. Experimental results show that the

PAD algorithm indeed converges faster than the APLP algorithm.

2. PROBLEM FORMULATION

In this section, we first briefly describe the discrete MAP problem.

After that, we present the LP relaxation to the discrete MAP prob-

lem.

2.1. Discrete MAP problem

Let X = {Xi|i = 1, . . . , n} be a vector of discrete random vari-

ables, where each variable Xi takes its value from a discrete set Xi.

For each variable Xi, we denote its realization as xi ∈ Xi. More

generally, for a subvector Xc of variables, where c ⊆ {1, . . . , n},

we denote its realization as xc ∈ Xc. When c = {1, . . . , n}, we let

xc = x and Xc = X for simplicity. Suppose that the joint proba-

bility P (x) of the variables admits a decomposition with respect to

a factor graph G = (V,C):

P (x) ∝ exp

(

∑

i∈V

θi(xi) +
∑

c∈C

θc(xc)

)

, (1)

where C denotes a set of subsets of {1, . . . , n}. Each element c ∈ C

is associated with a factor in the graph. We use N(i) to denote the

set of factors that include i, i.e., N(i) = {c|i ∈ c}. We use |N(i)|
to denote the number of factors in N(i). Similarly, we let |c| denote

the number of variables in c. In the literature, θi(xi) and θc(xc)
are named as unary and higher-order log-potentials functions, re-

spectively. The probability formulation (1) is termed as the Markov

Random Field (MRF).

We are interested in finding the most probable assignment (MAP

assignment) for the distribution P (x) in (1)

x
MAP = argmax

x∈X

(

∑

i∈V

θi(xi) +
∑

c∈C

θc(xc)

)

. (2)

As mentioned in the introduction, the above problem is NP-hard

for general graphic models. As a result, the research attention has

moved to the development of approximation approaches such as the

MAP-LP relaxation. To simplify notations in the following, we use

the vectors θi and θc to represent the log-potential functions for any

i ∈ V and c ∈ C, respectively.

2.2. LP Relaxation

LP relaxation is one of the most popular approximation approaches

for the MAP problem [1, 2]. The basic idea is to introduce two sets

of auxiliary variables µ = {µi, i ∈ V } and ν = {νc, c ∈ C} such

that

µ ∈ Lµ

∆
=
{

µ|µi ≥ 0,1⊤
µi = 1,∀i ∈ V

}

ν ∈ Lν

∆
=
{

ν|νc ≥ 0,1⊤
νc = 1, ∀c ∈ C

}

.

We refer to µi as the node variable for i ∈ V . Similarly, we refer

to νc as the factor variable for c ∈ C. The MAP problem can then

be approximated by a tractable LP in terms of (µ,ν). Formally, the

MAP-LP relaxation to (2) takes the form

(µ∗
,ν

∗) = arg max
µ∈Lµ,ν∈Lν

(

∑

i

µ
⊤

i θi +
∑

c

ν
⊤
c θc

)

, (3)

subject to

µi = Aciνc ∀c, i : i ∈ c, (4)

where Aci(xi,xc) = 1 if [xc]i = xi, and 0 otherwise. It is known

that if the optimal solution µ∗ in (3) takes integer values, we obtain

the exact MAP solution. On the other hand, if µ∗ takes non-integer

values, a good approximation of the MAP solution can often be ob-

tained by making hard-decision to µ∗. That is for each variable Xi,

its MAP assignment ki is approximated as ki = argmax(µ∗

i ).
For the primal LP formulation (3), its dual LP takes the form of

[14]

min
δ

(

∑

i

max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

+
∑

c

max
xc

(

θc(xc)−
∑

i:i∈c

δci(xi)

))

, (5)

where δci = {δci(xi)|xi ∈ Xi} and δ = {δci|c ∈ C, i : i ∈ c}.

Note that the dual problem (5) has a small number of variables and

no explicit constraints as compared to the primal problem (3), which

makes it relatively easier to solve. In the literature, much progress

has been obtained by considering the dual problem [5, 14]. In this

paper, we will focus on the primal LP problem (3) instead.

3. PROXIMAL ALTERNATING-DIRECTION

MESSAGE-PASSING

In this section we derive the PAD algorithm by applying the

PADMM to the primal MAP-LP problem (3). The PADMM is

an extension of the ADMM that introduces feedback from last iter-

ation in constructing the proximal augmented Lagrangian function

for next iteration [15, 12].

3.1. Functional construction

In this subsection, we study how to construct the proximal aug-

mented Lagrangian function properly for (3) that leads to simple

computation per-iteration. As will be shown below, the main dif-

ficulty sits in the estimation of ν∗ at each iteration.

Suppose that the estimate (µ̂k, ν̂k) is obtained after the first k
iterations, where k ≥ 0. We would like to compute the new es-

timate (µ̂k+1, ν̂k+1) in next iteration. By following the PADMM

framework [15, 12], we construct a proximal augmented Lagrangian

function for the MAP-LP problem (3) as

L
(k)
ρ (µ,ν,γ)

= −
∑

i

µ
⊤

i θi −
∑

c

ν
⊤
c θc +

∑

c

∑

i:i∈c

γ
⊤

ci(Aciνc − µi)

+
ρ

2

∑

c

∑

i:i∈c

‖Aciνc − µi‖
2
2

+
1

2

∑

c∈C

(νc − ν̂
k
c )

⊤
Dc(νc − ν̂

k
c ), (6)
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where γ is the Lagrangian multiplier, and ρ > 0 is the weighting fac-

tor for the quadratic penalty function. The last term in (6) captures

the feedback ν̂k in computing the new estimate. The positive semi-

definite matrices {Dc, c ∈ C} in (6) control the amount of feed-

back, which are remained to be specified. By following the updating

procedure of the PADMM, the new estimate (µ̂k+1, ν̂k+1, γ̂k+1)
can be computed as

ν̂
k+1 = arg min

ν∈Lν

L
(k)
ρ (µ̂k

,ν, γ̂
k) (7)

µ̂
k+1 = arg min

µ∈Lµ

L
(k)
ρ (µ, ν̂k+1

, γ̂
k) (8)

γ̂
k+1
ci = γ̂

k
ci + ρ(Aciν̂

k+1
c − µ̂

k+1
i ). ∀c, i : i ∈ c (9)

We note that the computation of µ̂k+1 and γ̂k+1 in (8)-(9) is

straightforward (see next subsection). On the other hand, the com-

putation of ν̂k+1 in (7) is rather difficult due to the constraint Lν

and the matrices {Aci}. Our motivation for introducing the matri-

ces {Dc} is to make the resulting constrained quadratic optimization

for ν easily solvable. We explain in the following how to select the

matrices {Dc, c ∈ C} in (6) to facilitate the computation of ν̂k+1.

We now focus on minimizing L
(k)
ρ (µ̂k,ν, γ̂k) with respect to

ν. Note from (6) that the minimization of L
(k)
ρ (µ̂k,ν, γ̂k) can be

broken into a set of independent subproblems. Further, each sub-

problem is in fact a constrained quadratic optimization problem in

terms of a factor variable νc, c ∈ C:

ν̂
k+1
c = arg min

νc∈Mc

(

1

2
ν
⊤
c Jcνc − h

(k)⊤
c νc

)

, (10)

where

Jc = ρ
∑

i∈c

A
⊤
ciAci +Dc

h
(k)
c = θc +

∑

i∈c

A
⊤
ci(ρµ

k
i − γ

k
ci) +Dcν

k
c

Mc =

{

νc ≥ 0

∣

∣

∣

∣

1
⊤
νc = 1

}

,

where the convex set Mc is in fact the simplex for νc.

In general, for an arbitrary positive semi-definite matrix Jc, it

is difficult to solve (10) directly. If, on the other hand, Jc takes a

special structure, the problem (10) may have a simple solution. In

our work, we choose a quadratic matrix Dc such that the resulting

matrix Jc takes the form of

Jc =













σc τc · · · τc

τc σc

. . .
...

...
. . .

. . . τc
τc · · · τc σc













, (11)

where σc > τc ≥ 0. That is all the diagonal elements of Jc are

identical and all the off-diagonal elements are identical. It is known

from [16] that such symmetry of Jc enables us to solve (10) in a few

number of steps. Specifically, the number of steps is in order of the

dimensionality of νc.

Depending on the different values of τc in (11), we can choose

different matrices for Dc accordingly. The basic principle is to make

the matrix Dc, c ∈ C, as small as possible (i.e., in a matrix-norm

sense) in achieving the matrix form (11) for Jc. By doing so, the so-

lution ν̂k+1
c would be more effective, accelerating the convergence

speed. We note that {Aci|c ∈ C, i ∈ c} is data-independent. There-

fore, once Dc is chosen, it can be used in every iteration when im-

plementing the corresponding message-passing algorithm.

We note that (7)-(9) only involves two layers of optimization.

That is the node-oriented optimization for µ and the factor-oriented

optimization for ν. This is mainly because of the introduction of the

feedback signal (the last term in (6)), which makes the individual

minimization of L
(k)
ρ (ν,µ,γ) over ν and µ easily solvable (see

next subsection for details).

Remark 1. It is worth noting that in [14], another set of auxiliary

variables ν̄ = {ν̄c, c ∈ C} (a copy of ν) has been introduced in

designing the APLP algorithm. The set ν̄ are used to bridge the

connection between µ and ν in (3). As a result, each iteration of

the APLP algorithm involves three layers of optimization, where the

third layer of optimization is for ν̄.

3.2. Computing new estimate

In this subsection, we compute the new estimate (µ̂k+1, ν̂k+1, γ̂k+1)
by following the PADMM updating procedure (7)-(9). For the com-

putation of ν̂k+1, we make use of the special structure Jc in (11).

We first consider the minimization of L
(k)
ρ (µ̂k,ν, γ̂k) over ν .

From the analysis in subsection 3.1, it is clear that the new estimate

ν̂k+1 = {ν̂k+1
c |c ∈ C} can be computed by solving (10) for each

factor c ∈ C. We suppose that the matrix Jc in (10) takes the form of

(11) due to careful construction of Dc. In [16], an efficient algorithm

has been proposed for solving (10)-(11). We refer to the algorithm as

Subroutine ”projectSimplex” in our work. The updating procedure

for ν̂k+1 is summarized in Algorithm 1.

Next we consider the minimization of L
(k)
ρ (µ, ν̂k+1, γ̂k) over

µ. Again, the minimization problem can be broken into a set of in-

dependent subproblems. Each subproblem is a constrained quadratic

optimization problem in terms of a node variable µi, i ∈ V :

µ̂
k+1
i = arg min

µi∈Mi

(

ρ|N(i)|

2
‖µi‖

2
2 − h

(k)⊤
i µi

)

, (12)

where

h
(k)
i = θi +

∑

c:i∈c

(Aciρν
k+1
c + γ

k
ci)

Mi =

{

µi ≥ 0

∣

∣

∣

∣

1
⊤
µi = 1

}

.

We note that the quadratic matrix J i in (12) is actually an identity

matrix multiplied by a scalar. Thus, we can also apply the subroutine

”projectSimplex” to compute the optimal solution µ̂k+1
i efficiently,

as demonstrated in Algorithm 1.

Finally, the computation for γ̂k+1 is straightforward. Equ. (9)

fully specifies the updating expression for γ̂k+1. We note that it is

in fact a gradient-descent operation. On the other hand, the compu-

tation for (µ̂k+1, ν̂k+1) are coordinate-descent operations.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the PAD algorithm by

experiment. Besides the PAD algorithm, we also implement the DD-

ADMM and the APLP algorithms for performance comparison. Our

primary interest in the experiment is to find out if the PAD algorithm

converges faster than the APLP algorithm.

We conducted two experiments on a grid of size 20 × 20 with

pairwise nearest neighbor interactions. The first experiment was for
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Fig. 2. The graphic model in the two experiments is a grid of 20× 20 with pairwise nearest neighbor interactions. Each node may have two,

three or four neighbors. The solid curve for each algorithm denotes the dual objective of (5). On the other hand, the dot-dashed curve denote

the value of the best decoded primal solution.

Algorithm 1: The PAD Algorithm

Input: Parameters {θi, i ∈ V }, {θc, c ∈ C}, number of

iterations T , parameter ρ and {Dc, c ∈ C}
Initialization: γ0 = 0, (µ0, ν0) are set to be uniformly

distributed.

for k = 0 to T − 1 do

Update ν: for all c ∈ C

Set h
(k)
c = θc +

∑

i∈c A
⊤
ci(ρµ̂

k
i − γ̂k

ci) +Dcν̂
k
c

ν̂k+1
c = projectSimplex(h

(k)
c , σc, τc)

Update µ: for all i = 1, . . . , n

Set h
(k)
i = θi +

∑

c:i∈c(Aciρν̂
k+1
c + γ̂k

ci)

µ̂k+1
i = projectSimplex

(

h
(k)
i , ρ|N(i)|, 0

)

Update γ

γ̂k+1
ci = γ̂k

ci + ρ
(

Aciν̂
k+1
c − µ̂k+1

i

)

∀c ∈ C, i : i ∈ c

end for

the binary-valued case (see Fig. 2:(a)). The unary and pairwise po-

tentials were sampled from a Gaussian distribution with variance 16.

In the implementation of the three algorithms, the parameter ρ was

set as ρ = 5. For the PAD algorithm, the parameters (τc, σc) in Jc

were set as (τc, σc) = (1, 3). The matrices {Dc, c ∈ C} were then

determined accordingly.

The second experiment was for the multi-valued case (see

Fig. 2:(b)). Each random variable ranged over eight states. Similarly,

the unary and pairwise potentials were sampled from a Gaussian dis-

tribution with variance 16. In this case, we only tested the PAD and

the APLP algorithms. The parameter ρ for the two algorithms was

set as ρ = 5. The parameters (τc, σc) for the PAD algorithm were

set as (τc, σc) = (0, 16).

The experimental results are displayed in Fig. 2. It is seen that

the PAD algorithm converges significantly faster than the APLP al-

gorithm in both experiments. As explained in Subsection 3.1, this

may be due to the fact that the PAD algorithm involves fewer num-

ber of auxiliary variables than that of the APLP algorithm, resulting

in more efficient information flow on the graph. It is also worth not-

ing that the performance of the DD-ADMM and the PAD algorithms

is comparable. This is because the amount of feedback signal is

quite small, only bringing little effect to the performance of the PAD

algorithm.

5. CONCLUSION

In this paper, we have proposed the PAD algorithm for the primal

MAP LP-relaxation problem by using the PADMM. In the design

of the PAD algorithm, we have introduced feedback signal to reduce

the number of auxiliary variables as required by the APLP algorithm.

As a result, the PAD algorithm only performs two layers of optimiza-

tion at each iteration as compared to the APLP algorithm which has

to perform three layers of optimization. Therefore, the PAD algo-

rithm has lower computational complexity and converges faster than

the APLP algorithm. Experimental results confirms that the PAD

algorithm indeed outperforms that the APLP algorithm.
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