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ABSTRACT

The approximate MAP inference over (factor) graphic models is of

great importance in many applications. Due to its simplicity, linear-

programming (LP) relaxation has become one of the most popu-

lar approaches to approximate MAP. In this paper, we propose a

new message passing algorithm for the MAP LP-relaxation problem

by using the alternating-direction method of multipliers (ADMM).

At each iteration, the new algorithm performs two layers of opti-

mization sequentially, that is node-oriented optimization and factor-

oriented optimization. On the other hand, the recently proposed aug-

mented dual LP (ADLP) algorithm, also based on the ADMM, has

to perform three layers of optimization. We refer to our new algo-

rithm as the simplified ADLP (SiADLP) algorithm. The design of

the SiADLP algorithm stems from a new formulation for the dual

LP problem. Experimental results show that the SiADLP algorithm

outperforms the ADLP method.

Index Terms— graphic models, ADMM, message-passing,

MAP, LP relaxation

1. INTRODUCTION

Graphic models are widely used to describe the statistics of a set

of discrete random variables. Such formulation nicely captures the

sparsity of the inter-dependencies of the variables, facilitating prob-

abilistic inferences via local message-passing over the graph. One of

the fundamental inference tasks is to find the maximum a-posteriori

(MAP) assignment. It is known that for loopy-graphic models, the

computation of the MAP solution is NP-hard.

In the literature, considerable attention has been devoted to

approximate the MAP solution by solving a relaxed optimization

problem. Due to its simplicity and effectiveness, linear program-

ming (LP) relaxation has become one of the most popular approx-

imation approaches [1, 2, 3, 4]). In the past few years, various

message-passing algorithms have been proposed for solving MAP

LP-relaxation. Some algorithms perform block coordinate-descent

operations, such asmax-sum diffusion (MSD) [2] and max product

linear-programming (MPLP) [5] algorithms. While these algorithms

usually converge fast, they do not always reach the optimal solu-

tion of the LP-relaxation. To overcome the suboptimality issue,

some algorithms perform variants of subgradient descent to the

dual problem [6, 7]. Although these algorithms are guaranteed to

converge globally, they typically converge slower than the block

coordinate-descent ones.

Recently, the alternating direction method of multipliers

(ADMM) [8, 9, 10] has been employed in designing more effi-

cient and globally convergent message-passing algorithms for LP-

relaxation [11, 12]. The work in [11] considered applying ADMM

for graphs with binary-valued variables. The proposed DD-ADMM

algorithm in [11] performs two layers of optimization at each iter-

ation, which are node-oriented optimization and factor-oriented op-

timization (see Fig. 1). In [12], Meshi and Globerson extended the

work of [11] by considering graph models with multi-valued vari-

ables. The authors proposed two algorithms: the augmented primal

LP (APLP) method and the augmented dual LP (ADLP) method.

However, both algorithms perform three layers of optimization at

each iteration (see Fig. 1). Compared with the DD-ADMM algo-

rithm, the APLP and ADLP algorithms require one more optimiza-

tion at each iteration, increasing the computational complexities and

further slowing down the convergence speed.

Binary-Valued  Variables

Multi-Valued Variables

DD-ADMM Alg. (2011)

ADLP Alg. (2011)

* two-layer optimization

APLP Alg. (2011)

* three-layer optimization

SiADLP Alg. 
* two-layer optimization

primary 

domain

dual

domain
* three-layer optimization

Fig. 1. ADMM-based algorithms for solving MAP LP-relaxation.

The SiADLP algorithm is the new method we will present in this

paper.

In this paper, we reconsider solving the dual MAP LP-relaxation

problem by using ADMM. Our primary motivation is to design a

new message passing algorithm that only performs two layers of op-

timization at each iteration. To achieve this goal, we first reformulate

the dual MAP LP-relaxation problem in a more compact way than

that of [12]. Specifically, we introduce fewer auxiliary variables than

that of [12] and further add a set of constraints to bring the remaining

variables more close (see Section 3 for detailed information).

The new algorithm follows directly by applying ADMM to the

reformulated optimization problem. We refer to the new algorithm as

the simplified ADLP (SiADLP) method (see Fig. 1). Experimental

results show that the SiADLP algorithm converges faster than the

ADLP algorithm.
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2. PROBLEM FORMULATION

In this section, we first briefly describe the discrete MAP problem.

After that, we present the LP relaxation to the discrete MAP prob-

lem.

2.1. Discrete MAP problem

Let X = {Xi|i = 1, . . . , n} be a set of discrete random variables,

where each variable Xi takes its value from a discrete set Xi. For

each variable Xi, we denote its realization as xi ∈ Xi. More gener-

ally, for a subset Xc of variables, where c ⊆ {1, . . . , n}, we denote

its realization as xc ∈ Xc. When c = {1, . . . , n}, we let xc = x and

Xc = X for simplicity. Suppose that the joint probability P (x) of

the variables admits a decomposition with respect to a factor graph

G = (V,C):

P (x) ∝ exp

(

∑

i

θi(xi) +
∑

c∈C

θc(xc)

)

, (1)

where C denotes a set of subsets of {1, . . . , n}. Each element c ∈ C
is associated with a factor in the graph. We use N(i) to denote the

set of factors that include i, i.e., N(i) = {c|i ∈ c}. We use |N(i)|
to denote the number of factors in N(i). Similarly, we let |c| denote

the number of variables in c. In the literature, θi(xi) and θc(xc)
are named as unary and higher-order log-potentials functions, re-

spectively. The probability formulation (1) is termed as the Markov

Random Field (MRF).

We are interested in finding the most probable assignment (MAP

assignment) for the distribution P (x) in (1)

xMAP = argmax
x∈X

(

∑

i

θi(xi) +
∑

c∈C

θc(xc)

)

. (2)

As mentioned in the introduction, the above problem is NP-hard for

general graphic models. As a result, the research attention has been

moved to the development of approximation approaches such as the

MAP-LP relaxation.

2.2. LP Relaxation

LP relaxation is one of the most popular approximation approaches

for the MAP problem [1, 2]. The basic idea is to introduce a set of

variables and then approximate the MAP problem by a tractable LP

in terms of the variables. The LP is designed such that the combi-

natorial constraints of the MAP problem (2) are relaxed to a set of

linear constraints in terms of the variables. Formally, the MAP-LP

relaxation to (2) takes the form [11]

(µ∗, ν∗) = arg max
(µ,ν)∈L(G)

(

∑

i

∑

xi

µi(xi)θi(xi)

+
∑

c

∑

xc

νc(xc)θc(xc)
)

, (3)

where the local polytope L(G) is defined as

L(G) =







(µ, ν)

∣

∣

∣

∣

∣

∣

∑

xi
µi(xi) = 1, ∀i ∈ V

µi(xi) =
∑

xc\i
νc(xc\i, xi) ∀i : i ∈ c, xi

νc(xc) ≥ 0 c ∈ C, xc







.

It is known that if the optimal solution µ∗ in (3) takes integer values,

we obtain the exact MAP solution. On the other hand, if µ∗ takes

non-integer values, a good approximation of the MAP solution can

be obtained by making hard-decision to µ∗. That is for each variable

Xi, its MAP assignment ki is approximated as ki = argmax(µ∗
i ).

For the primal LP formulation (3), its dual LP takes the form of

[12]

min
δ

(

∑

i

max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

+
∑

c

max
xc

(

θc(xc)−
∑

i:i∈c

δci(xi)

))

, (4)

where δci = {δci(xi)|xi ∈ Xi} and δ = {δci|c ∈ C, i : i ∈ c}.

Note that the dual problem (4) has a small number of variables and

no explicit constraints as compared to the primal problem (3), which

makes it relatively easier to solve. In the literature, much progress

has been obtained by considering the dual problem [5, 12]. In this

paper, we will also focus on the dual problem (4).

3. SIMPLIFIED ALTERNATING-DIRECTION MESSAGE

PASSING

In this section, we derive the SiADLP algorithm by applying ADMM

to the dual MAP-LP problem (4). The main step is to reformulate

the dual problem properly to allow the application of ADMM.

3.1. Reformulation of dual LP-relaxation

In this subsection, we reformulate the dual MAP LP-relaxation prob-

lem (4). The new problem formulation will serve a starting point to

derive the SiADLP algorithm.

We build a new form of the objective function of (4) in a similar

manner as that of (3). That is we introduce an auxiliary variable

λc = {λc(xc), xc ∈ Xc} for each factor c ∈ C, which corresponds

to νc in (3). We denote the set of auxiliary variables as λ = {λc, c ∈
C}. With λ, the dual problem (4) can be rewritten as

min
δ,λ

(

∑

i

max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

+
∑

c

max
xc

(θc(xc)− λc(xc))

)

, (5)

where

λc(xc) =
∑

i:i∈c

δci(xi) ∀c, i : i ∈ c, xc. (6)

Our main purpose to introduce λ is to separate the node-oriented

optimization and factor-oriented optimization in (4).

We note that the optimal solution of (5) is not unique. Suppose

(δ∗ = {δ∗ci|c ∈ C, i : i ∈ c}, λ∗ = {λ∗
c |c ∈ C}) is a particular op-

timal solution. One can add a constant aci ∈ R to each solution δ∗ci
to obtain δ̄∗ci = δ∗ci + aciei and let λ̄∗

c = λ∗
c +

∑

i:i∈c aciec, where

ei and ec are all-one vectors. The resulting solution (δ̄∗, λ̄∗) is also

optimal for (5). In other words, each variable δci in (5) has one de-

gree of freedom. In order to make the problem (5) more strict, we

introduce a set of constraints to (δ, λ) as

λ ∈

{

∑

xc

λc(xc) = 0, ∀c ∈ C

}

(7)
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δ ∈

{

∑

xi

δci(xi) = 0, ∀c ∈ C, i ∈ V

}

. (8)

Equations (6)-(8) together specify the constraints for the dual LP

problem.

To briefly summarize, in the process of reformulating the dual

problem (4), we introduce a set λ of auxiliary variables and also add

a set of constraints to (δ, λ). The new problem specified by (5)-(8) is

equivalent to (4). In next subsection, we consider the new problem

(5)-(8) instead of solving (4) directly.

3.2. Message updating-expressions

In this subsection, we derive the message updating-expressions for

the SiADLP algorithm. The basic idea is to construct an augmented

Lagrangian function for (5), allowing the usage of the ADMM. We

will show that at each iteration, the SiADLP algorithm only involves

two layers of optimization (see Fig. 1).

By following the ADMM framework [10], we construct the aug-

mented Lagrangian function for (5) as

Lρ(δ, λ, γ)

=
∑

i

max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

+
∑

c

max
xc

(θc(xc)− λc(xc))

+
∑

c

∑

xc

γc(xc)

(

λc(xc)−
∑

i:i∈c

δci(xi)

)

+
ρ

2

∑

c

∑

xc

(

λc(xc)−
∑

i:i∈c

δci(xi)

)2

, (9)

where the variables (δ, λ) satisfy the constraints (6)-(8). The

quadratic penalty function in (9) accounts for the equality con-

straint (6). By following the updating procedure of the ADMM [13],

the new estimate (δ̂(k+1), λ̂(k+1)) can be computed as

δ̂(k+1) = argmin
δ

Lρ(δ, λ̂
(k), γ̂(k)) (10)

λ̂(k+1) = argmin
λ

Lρ(δ̂
(k+1), λ, γ̂(k)). (11)

We note the computations for δ̂(k+1) and λ̂(k+1) are realized by per-

forming coordinate-descent operation.

We are now in a position to derive the explicit updating-

expressions for (δ, λ). Suppose that the estimate (δ̂(k), λ̂(k), γ̂(k))
is obtained after the first k iterations, where k ≥ 0. We first con-

sider the minimization of Lρ(δ, λ̂
(k), γ̂(k)) over δ. Without loss of

generality, we focus on the vectors {δci|c : i ∈ c} that are related

with node i ∈ V . The function for {δci|c : i ∈ c} can be extracted

from (9) as

∑

c:i∈c

∑

xi

(

ρ|Xc\i|

2
δci(xi)

2 − q
(k)
ci (xi)δci(xi)

)

+max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

+
∑

c:i∈c

ρ

(

∑

xi

δci(xi)

)

·





∑

j∈c,j 6=i

∣

∣Xc\{i,j}

∣

∣





∑

xj

δcj(xj)







 , (12)

where for each c, i ∈ c and xi ∈ Xi

q
(k)
ci (xi) =

∑

xc\i

(

γ̂(k)
c (xc\i, xi) + ρλ̂(k)

c (xc\i, xi)
)

. (13)

The last term in (12) captures the interactions between {δci|c : i ∈
c} and those of the nodes involved in the factors that include i.

In order to minimize the function in (12) over {δci|c : i ∈ c},

we first have to take care of the last term of the function. Fortunately,

we can totally remove the last term in (12) by using the constraint

(8). That is (12) can be reformulated as

∑

c:i∈c

(

ρ|Xc\i|

2
‖δci‖

2 − q
(k),⊤
ci δci

)

+max
xi

(

θi(xi) +
∑

c:i∈c

δci(xi)

)

, (14)

where {δci|c : i ∈ c} satisfy the constraints

∑

xi

δci(xi) = 0 ∀c : i ∈ c. (15)

The function in (14) can be easily minimized with respect to {δci|c :
i ∈ c} by inspecting the KKT conditions. The updating procedure

is summarized in Algorithm 1. In particular, in Algorithm 1, the

subroutine w = TRIM(v, d) serves to clip the values in the vector

v at some threshold t (i.e., wi = min(vi, t)) such that the sum of

removed parts equals d > 0 (i.e.,
∑

i vi − wi = d). We point out

that the subroutine TRIM was originally developed in [12] for the

design of the ADLP algorithm.

To briefly summarize from the above analysis, the update for δ
eventually boils down to solving a set of independent subproblems.

Each subproblem is a constrained quadratic optimization problem

of the form (14)-(15). We refer to the computation of δ as node-

oriented optimization.

Next we consider the minimization of Lρ(δ̂
(k+1), λ, γ̂(k)) over

λ. Similarly, the minimization problem can be broken into a set

of independent subproblems. Each subproblem is a constrained

quadratic optimization problem in terms of a factor variable λc,

c ∈ C:

min
λc

1

2
‖λc‖

2 − p(k),⊤c λc +
1

ρ
max
xc

(θc(xc)− λc(xc)), (16)

where

p(k),⊤c λc =
∑

xc

(

∑

i:i∈c

δ
(k+1)
ci (xi)−

1

ρ
γ̂(k)
c (xc)

)

λc(xc) (17)

0 =
∑

xc

λc(xc). (18)

The updating procedure for λc in (16) can be derived in a similar

manner as for δ, which is also presented in Algorithm 1. We refer

to the computation of λ as factor-oriented optimization.

Finally, we consider computing γ̂(k+1). According to the up-

dating procedure of the ADMM [10], the computation of γ̂(k+1) is

realized by performing gradient-descent operation. See Algorithm

1 for the final updating expression of γ.

We note that at iteration k, the updates for
(

δ̂(k+1), λ̂(k+1)
)

cor-

respond to two layers of optimization. The update for δ̂(k+1) is com-

puted by performing node-oriented optimization. On the other hand,
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Fig. 2. The graphic model in the two experiments is a grid of 10× 10 with pairwise nearest neighbor interactions. Each node may have two,

three or four neighbors. The solid curve for each algorithm denotes the dual objective of (4). On the other hand, the dot-dashed curve denotes

the objective value of the best decoded primal solution.

Algorithm 1 The SiADLP Algorithm

Input: Parameters {θi, i ∈ V }, {θc, c ∈ C},

number of iterations T .

Initialization: γ = 0, (λ, δ) = (0, 0)
for t = 0 to T − 1 do

Update δ: for all i = 1, . . . , n

Set q
(t)
i = θi

|N(i)|

∑

c:i∈c ρ|Xc\i|+
∑

c:i∈c q
(t)
ci

q̄
(t)
i = TRIM(q

(t)
i , |N(i)|)

h
(t)
i = (q

(t)
i − q̄

(t)
i )/|N(i)|

Update δ
(t+1)
ci =

(q
(t)
ci

−h
(t)
i

)−mean(q
(t)
ci

−h
(t)
i

)ei
ρ|Xc\i|

Update λ: for all c ∈ C

Set h
(t)
c = θc − p

(t)
c

h̄
(t)
c = TRIM(h

(t)
c , 1

ρ
)

Update λ
(t+1)
c = θc − h̄

(t)
c − mean(θc − h̄

(t)
c )ec

Update the multipliers

Update γ
(t+1)
c (xc) = γ

(t)
c (xc) + ρ

(

λ
(t+1)
c (xc)

−
∑

i:i∈c δ
(t+1)
ci (xi)

)

end for

the update for λ̂(k+1) is computed by performing factor-oriented op-

timization. The above operation is similar to that of the DD-ADMM

algorithm designed for binary-valued graph [11].

Remark 1. It is worth noting that in [12], the authors introduced

another set of auxiliary variables (copies of δ) in designing the

ADLP algorithm. The auxiliary variables are used to bridge the

connection between δ and λ in (5). As a result, each iteration of

the ADLP algorithm involves three layers of optimization, where the

third layer of optimization is for the auxiliary variables.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the SiADLP algo-

rithm by experiment. Besides the SiADLP algorithm, we also im-

plement the ADLP algorithms for performance comparison. Our

primary interest in the experiment is to find out if the SiADLP al-

gorithm converges faster than the ADLP algorithm.

We conducted two experiments on a grid of size 10 × 10 with

pairwise nearest neighbor interactions. The first experiment was for

the binary-valued case (see Fig. 2:(a)). The second experiment was

for the multi-valued case (see Fig. 2:(b)). The unary and pairwise

potentials were sampled from a Gaussian distribution with variance

16. In the implementation of the two algorithms, the parameter ρ
was set as ρ = 0.5. In the second experiment, each variable takes

four states, i.e., |Xi| = 4, i ∈ V .

The experimental results are displayed in Fig. 2. It is seen that

for each algorithm, the objective value of (4) (as denoted by a solid

curve) decreases along with the number of iterations, confirming the

convergence of ADMM. The SiADLP algorithm converges faster

than the ADLP algorithm in both experiments. This may be due to

the fact that the SiADLP algorithm performs two layers of optimiza-

tion per-iteration. On the other hand, the ADLP algorithm performs

three layers of optimization per-iteration.

5. CONCLUSION

In this paper, we have proposed the SiADLP algorithm for the dual

MAP LP-relaxation problem by using ADMM. The SiADLP algo-

rithm only performs two layers of optimization at each iteration as

compared to the ADLP algorithm which has to perform three lay-

ers of optimization. As a result, the SiADLP algorithm has lower

computational complexity and converges faster than the ADLP algo-

rithm. Experimental results demonstrate that the SiADLP algorithm

indeed converges faster than the ADLP algorithm.
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