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ABSTRACT

The lasso problem, least squares with a `1 regularization
penalty, has been very successful as a tool for obtaining
sparse representations of data in terms of given dictionary. It
is known, but not widely appreciated, that the lasso problem
need not have a unique solution. Sufficient conditions which
ensure uniqueness of the solution are known but necessary
and sufficient conditions have been elusive. We present three
structural results on the lasso problem. First, we show that
when the dictionary has more columns than rows, it is al-
ways possible to ensure that the dictionary has full row rank.
Next we show that the feasible set for the dual lasso problem
is bounded if and only if the dictionary has full row rank.
Lastly, we give necessary and sufficient conditions for the
uniqueness of a lasso solution.

Index Terms— Lasso, Uniqueness, Necessary and Suffi-
cient Conditions, Dual Problem, Bounded

1. INTRODUCTION

The sparse representation of data, sound, images, video, etc.,
with respect to a dictionary of codewords has provided a suc-
cessful new nonlinear data representation for machine learn-
ing and signal/image processing. At the heart of many such
sparse representation methods is the squares problem with `1
regularization, often called the lasso problem [1]:

min
w∈Rp

1/2‖x−Bw‖22 + λ‖w‖1. (1)

Here x ∈ Rn and w ∈ Rp are vectors, B ∈ Rn×p is a matrix,
‖w‖1 =

∑p
j=1 |wi| denotes the `1 norm of w and λ > 0 is

a regularization parameter. Problem (1) seeks a sparse repre-
sentation of x ∈ Rn as a linear combination of a subset of the
columns in B. The `1 regularization encourages the solution
w̃ of (1) to have many zero components and hence to use rela-
tively few of the columns ofB. We will callB the dictionary,
its columns {bi}pi=1 codewords, and x the target vector.

Problem (1) is convex and hence a local minimum is a
global minimum. However, it is known that in general (1)
may not have a unique solution [2–7]. This stems from the
problem’s inherent representational character: it seeks a linear

combination of a selected subset of the columns of B. Suffi-
cient conditions for uniqueness are known, e.g., [3, Theorem
1], see also [2, 4–7]. Among other things, these conditions
assume that at a solution w̃, the columns of B with nonzero
weights are linearly independent. Recently, [7] examined the
uniqueness question in a probabilistic framework and showed
that when the entries of the dictionary are drawn from a con-
tinuous distribution, the lasso has a unique solution almost
surely. This is encouraging from an application viewpoint and
probably contributes to the widespread success of the lasso
framework. Nevertheless, when one does encounter a situa-
tion when the solution is nonunique (or close to being so) one
would like to be able to verify this with a necessary and suffi-
cient test. Given one lasso solution, [2] provided a necessary
and sufficient condition for the existence of a unique solution
by checking the intersection between N (B) (the null space
of B) and a convex cone. In this paper, we show in §3 that
this condition can actually be expressed by the intersection
between N (B) and a tighter set which is determined by the
given lasso solution and the active set of codewords which
can be uniquely defined from the dual solution.

A second problem of interest is the Lagrangian dual of (1)
[2,8–10]. This problem can be parameterized as follows [10]:

max
θ∈Rn

1/2‖x‖22 − λ2
/2‖θ − x/λ‖22

s.t. |bTi θ| ≤ 1 ∀i = 1, 2, . . . , p,
(2)

where θ ∈ Rn. A point θ is said to be dual feasible if it
satisfies the constraints in (2). Problem (2) seeks to maximize
the loss function in (2), by finding the dual feasible point θ
that is closest to x/λ. By standard results, the dual problem
has a unique solution for every λ > 0 [11].

The main contribution of the paper provides necessary
and sufficient conditions for the uniqueness of the lasso so-
lution. We also show two other structural results for the lasso.
First, that without loss of generality when n ≤ p, we can
always assume that B has full row rank. Second, that the fea-
sible set of the dual lasso problem is bounded if and only of
rank(B) = n. Hence when n ≤ p, without loss of general-
ity we can always assume that the dual feasible set is bounded
and hence that the set of dual solutions over λ > 0 is bounded.
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We present two of the structural results in §2, the unique-
ness result in §3, and conclude in §4.

2. TWO STRUCTURAL RESULTS

The first structural result deals with the rank of B when n ≤
p, i.e., when B has more codewords than the data dimension.
In this case, B is full rank if and only if rank(B) = n. If
rank(B) < n ≤ p, then (1) and (2) can easily be transformed
into equivalent problems with a full rank dictionary. This is
our first result.

Theorem 1. Suppose that B in (1) has rank r < n ≤ p and
let the columns of U ∈ Rn×r be an orthonormal basis for the
range of B. Then (1) is equivalent to the problem:

min
w∈Rp

1/2‖(x̄− B̄w)‖22 + λ‖w‖1, (3)

with x̄ = UTx, B̄ = UTB and rank(B̄) = r. Moreover,
corresponding columns of the dictionaries B and B̄ have the
same norm.

Proof. Let x̂ = UUTx be the orthogonal projection of x onto
R(B). Then

1/2‖x−Bw‖22 + λ‖w‖1
= 1/2‖(x− x̂) + (x̂−Bw)‖22 + λ‖w‖1
= 1/2‖(x− x̂)‖22 + 1/2‖(x̂−Bw)‖22 + λ‖w‖1,

where we used the fact that x − x̂ is orthogonal to x̂ − Bw.
Since the first term in the last equation is a constant, problem
(1) is equivalent to minw∈Rn 1/2‖(x̂−Bw)‖22+λ‖w‖1. Now
use the fact that ‖Uz‖2 = ‖z‖2 and that y ∈ R(B) implies
UUTy = y, to write:

1/2‖x̂−Bw‖22 + λ‖w‖1
= 1/2‖(UTx)− (UTB)w)‖22 + λ‖w‖1
= 1/2‖(x̄− B̄w)‖22 + λ‖w‖1,

where x̄ = UTx ∈ Rr and B̄ = UTB ∈ Rr×p. For each
column b̄i of B̄, ‖b̄i‖2 = ‖UTbi‖2 = ‖UUTbi‖2 = ‖bi‖2.

Our second result deals with the feasible set of the dual
problem (2). We first recall how dual problem (2) is obtained.
Setting z = x − Bw in (1) gives the constrained problem:
minz,w

1/2 zT z + λ‖w‖1, subject to z = x − Bw. Mini-
mization of the Lagrangian L(z,w,µ) = 1/2 zT z+λ‖w‖1+
µT (x − Bw − z) with respect to z and w yields µ = z̃
and the constraints |µTbi| ≤ λ, i = 1, . . . , p. This leads to
the dual problem: maxµ

1/2 ‖x‖22 − 1/2‖µ − x‖22, subject to
|µTbi| ≤ λ, i = 1, . . . , p, which always has a unique solu-
tion. The change of variable θ = µ/λ then gives (2). Finally,

by this construction the solutions w̃ and θ̃ of (1) and (2) are
related through:

x = Bw̃ + λθ̃, (4)

bTi θ̃ =

{
sign w̃i if w̃i 6= 0;

σ ∈ [−1, 1] if w̃i = 0.
(5)

Letting B = {±bi}pi=1 allows the constraints in (2) to be
stated as ∀b ∈ B : bTθ ≤ 1.

Let H(y) = {z : zTy ≤ 1} denote the corresponding
closed half space containing the origin. So a constraint of the
form bTθ ≤ 1 requires that θ lies in the closed half space
H(b). It follows that the set of dual feasible points F is a
nonempty, closed, convex polyhedron formed by the intersec-
tion of a finite set of closed half spaces. And it is symmetric
with respect to the origin, i.e. F = −F .

The boundedness of F is determined by the rank of the
dictionary. This is our second result.

Theorem 2. The set F of dual feasible points is bounded if
and only if rank(B) = n.

When n ≤ p, it follows from Theorems 1 and 2 that with-
out loss of generality we can always assume that the set of
dual feasible points is bounded. On the other hand, when
p < n, rank(B) ≤ p < n and the set F cannot be bounded.
There are simply not enough codewords to form a bounded
region in Rn.

Proof. (⇐) Suppose F is unbounded. Then there exists h
with ‖h‖2 = 1 such that αh ∈ F for all α > 0. Since
rank(B) = n, there exists u ∈ Rp with h = Bu. Then
1 = hTh = (hTB)u. It follows that for some i, hTbiui > 0.
If ui > 0, then hTbi > 0; and if ui < 0, then hT (−bi) > 0.
Hence there exists b ∈ B such that hTb = c > 0. But then
bT (αh) = αc is greater than 1 for α sufficiently large. This
contradicts αh ∈ F for all α > 0. HenceF must be bounded.
(⇒) Suppose rank(B) < n. Then there exists θ with ‖θ‖2 =
1 such that θTB = 0. Hence bTθ = 0 for each b ∈ B.
It follows that θ ∈ F . Moreover, for each α > 0, αθ is
also in F . But then F is unbounded; a contradiction. Thus
rank(B) = n.

We end this section with a few additional observations
about F . We note that the dual problem seeks a point within
F that is closest to a given point in Rn. This is a well stud-
ied problem. For any closed convex set C ⊂ Rn and any
point z ∈ Rn, there is a unique point ẑ ∈ C that is closest
to z [11, §3.1]. Hence for any x and any λ > 0, the dual
problem has a unique solution θ̃.

For λ sufficiently small the dual solution θ̃(λ) will lie on
the boundary of F . The boundary is the surface of a polyhe-
dron in Rn. For any θ ∈ F , define

A+(θ) = {i : bTi θ = 1} , A−(θ) = {i : bTi θ = −1} (6)
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and set A(θ) = A+(θ) ∪ A−(θ). The codewords indexed in
A(θ) are the active constraints at θ. If A(θ) = ∅, θ is in the
interior of F . Each cell on the boundary of the polyhedron
F has a nonempty configuration of active sets A+, A− and
A = A+ ∪A− for all points θ within that cell.

3. UNIQUENESS OF THE LASSO SOLUTION

Now consider the uniqueness of the solution of the lasso prob-
lem (1). For any λ > 0, let θ̃(λ) denote the unique dual so-
lution, Ã+(λ), Ã−(λ) denote the corresponding set of active
constraints at θ̃(λ) and let Ã(λ) = Ã+(λ) ∪ Ã−(λ). We first
establish the following simple lemma, which was also par-
tially stated in [7].

Lemma 1. Let x̃(λ) = x− λθ̃(λ). Then

i ∈ Ã+(λ)⇔ bTi (x− x̃(λ)) = λ, (7)

i ∈ Ã−(λ)⇔ bTi (x− x̃(λ)) = −λ, (8)

i /∈ Ã(λ)⇔ bTi (x− x̃(λ)) ∈ (−λ, λ). (9)

If w̃1, w̃2 are solutions of (1), then x̃(λ) = Bw̃1 = Bw̃2 and
w̃1, w̃2 have the same least squares error ‖x − Bw̃1‖22 =
‖x − Bw̃2‖22, the same `1 norm ‖w̃1‖1 = ‖w̃2‖1 and the
same active sets A+(λ), A−(λ).

Proof. By definition, i ∈ Ã+(λ) ⇔ bTi θ̃(λ) = 1. Noting
that θ̃(λ) = (x − x̃(λ))/λ yields i ∈ Ã+(λ) ⇔ bTi (x −
x̃(λ)) = λ. The proof for Ã−(λ) is similar. For every bi,
bTi θ̃(λ) ∈ [−1, 1]. By definition, i /∈ Ã(λ) ⇔ bTi θ̃(λ) ∈
(−1, 1). Since θ̃(λ) = (x − x̃(λ))/λ, this is equivalent to
(9). Now let w̃ be a solution of (1) with the regularization
parameter set to λ. Then by (4), x̃(λ) = Bw̃. Hence if
w̃1, w̃2 are solutions of (1), then x̃(λ) = Bw̃1 = Bw̃2. It
follows that ‖x−Bw̃1‖22 = ‖x−Bw̃2‖22. Since w̃1, w̃2 both
minimize the lasso objective and have the same least squares
cost, it must also hold that ‖w̃1‖1 = ‖w̃2‖1. By (7), (8), the
active sets are determined by x̃ = Bw̃. Hence w̃1, w̃2 have
the same active constraint sets.

The vector x̃(λ) is the approximation of x, and ẽ(λ) =
x − x̃(λ) is the corresponding error or residual, produced by
solving the lasso problem. Since θ̃(λ) is unique, these points
are uniquely defined. Moreover, Ã+(λ) and Ã−(λ), defined
by θ̃(λ), are also uniquely determined by x̃(λ). Note that Ã+

and Ã− are based on the active constraints of the dual solu-
tion, not on the support set of a particular solution w̃ of the
primal problem. A solution w̃ of (1) simply gives a repre-
sentation of x̃ as Bw̃. It is well known, however, that this
representation may not be unique. But any two solutions will
have the same least squares error, the same `1 norm and the
same active constraint sets Ã+, Ã−.

For the next step it will be useful to recall the following
basic optimality result, see e.g., [3].

Lemma 2. A vector w is a solution of (1) if and only if for
each codeword bi:

bTi (x−Bw) =


λ, if wi > 0

−λ, if wi < 0

σ ∈ [−λ, λ], if wi = 0.

(10)

The known sufficient condition for a solution w̃ of (1) to
be unique is that it satisfies (10) with the third line satisfied
with inclusion in (−λ, λ) and the matrix of consisting of the
columns of B corresponding to the nonzero entries of w̃ has
full rank [3, Theorem 1]. Here we focus on developing a nec-
essary and sufficient condition.

For any matrix M , letN (M) denote the null space of M .
For a subspace U of Rk, let U⊥ denote the subspace of all
vectors orthogonal to every vector in U . If u ∈ Rk, span{u}
is the subspace spanned by u. In this case, span{u}⊥ is the
k− 1 dimensional hyperplane with normal u. For brevity, we
abbreviate span{u}⊥ to simply u⊥.

In what follows, we abbreviate Ã+(λ) to simply Ã+.
Similarly, for Ã−(λ) and Ã(λ). It will be understood that
these sets depend on λ. Note that for fixed values of x and
λ, all solutions w̃ of (1) share the same active set Ã. What
will be important is the projection of w̃ onto its coordinates
indexed by this set. Let w̃↓Ã ∈ R|Ã| be formed by retaining
only the entries of w̃ indexed by Ã. For simplicity, we also
assume that the the vector w̃↓Ã has the entries corresponding
to Ã+ at the top followed by the entries corresponding to Ã−.
This can always be achieved by a permutation of the columns
of B. This defines a linear mapping from Rp to R|Ã| satisfy-
ing ‖w̃‖1 = ‖w̃↓Ã‖1 for every solution w̃. Correspondingly,
let B↓Ã denote the submatrix of B formed by selecting only
the columns with indices in Ã . From these definitions and
the definition of Ã, it follows that Bw̃ = B↓Ãw̃↓Ã.

For given x and λ, let ã+ ∈ Rp be the indicator vector of
Ã+: ã+i = 1 if i ∈ Ã+, and zero otherwise. Similarly, define
the indicator vector of Ã− as ã−. Then set ã = ã+− ã−. You
can think of ã as a signed indicator vector of the active set of
constraints. For a solution w̃, this indicator vector ã ensures
ãT w̃ = ‖w̃‖1.

Since each entry of ã↓Ã is in {±1}, it specifies a face
(including its edges, vertices etc) of the unit `1-ball in R|Ã|
and for every solution w̃, the projection w̃↓Ã must lie on this
face after scaling by ‖w̃‖1. The (|Ã| − 1)-dimensional sub-
space (ã↓Ã)⊥is parallel to the selected face of the unit `1-
ball. Moreover, translation of a solution w̃↓Ã in this subspace
perserves the `1 norm. Similarly, translation of a solution w̃↓Ã
in N (B↓Ã) perserves the least squares error term. Hence a
sufficient condition for a unique solution is that N (B↓Ã) ∩
(ã↓Ã)⊥ = {0}. Note that this is only sufficient because there
is one more constraint to take into account. For a solution w̃↓Ã
on the selected face of the `1-ball, one can only move in a set
of feasible directions, i.e., w̃↓Ã,i ≥ 0 for i = 1, 2, ...|Ã+|, and
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Fig. 1. All solutions must lie on the same face of the `1-ball.

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

𝑤↓𝑨
(!)

	  

	  

𝑤↓𝑨
(!)

	  

	  

𝑤↓𝑨
(!)

	  

	  

	  

𝑑 	  

	  

Fig. 2. D(w̃↓Ã) depends on where w̃↓Ã lies on the face.

w̃↓Ã,i ≤ 0 for i = |Ã+|+ 1, |Ã+|+ 2, ...|Ã|, or stated equiv-

alently, w̃↓Ã ∈ R|Ã
+|

+ × R|Ã−|− . Now we define a mobility

set of w̃↓Ã as D(w̃↓Ã) = {v ∈ R|Ã| : v + w̃↓Ã ∈ R|Ã
+|

+ ×
R|Ã−|− } = R|Ã

+|
+ ×R|Ã−|− −w̃↓Ã. Then w̃↓Ã remains a solution

when shifted by any vector in N (B↓Ã) ∩ (ã↓Ã)⊥ ∩D(w̃↓Ã).
Hence we have a tighter sufficent condition for uniqueness:
N (B↓Ã) ∩ (ã↓Ã)⊥ ∩D(w̃↓Ã) = {0}.

This condition is also necessary. To see this, we need to
restate Lemma 2. Suppose we have already found the dual
solution θ̃(λ) and known Ã+(λ), Ã−(λ), sufficient and nec-
essary conditions stated in (4) and (5) are equivalent to the
following Lemma.

Lemma 3. A vector w with active sets Ã+ and Ã− is a solu-
tion of (1) if and only if:

B↓Ãw↓Ã = x− λθ̃ (11)

w↓Ã,i

{
≥ 0 if i ∈ Ã+

≤ 0 if i ∈ Ã−.
(12)

Once we fix the active sets and determine one solution,
the set of all solutions is determined by the intersection of a
linear constraint and a set of simple linear inequalities. This is
a convex set. The nature of the lasso problem ensures at least
one solution, denoted as w̃↓Ã. For any h = w↓Ã − w̃↓Ã ∈
N (B↓Ã) ∩D(w̃↓Ã), w↓Ã = w̃↓Ã + h satisfies (11) and (12),
and therefore is also a solution, vice versa. We now state our
third result.

Theorem 3. Let S(x, λ) denote the solution set of (1),
Ã+, Ã− denote its active constraint sets and ã denote its
corresponding signed indicator vector. Then:
1) S(x, λ) is a closed, bounded convex set of constant `1
norm.
2) The lasso solution w̃ is unique if and only if

N (B↓Ã) ∩D(w̃↓Ã) = {0}.

3) If N (B↓Ã) ∩ (ã↓Ã)⊥ = {0}, then the solution is unique.
4) If N (B↓Ã) = {0}, then the solution is unique.

Note that N (B↓Ã) ∩ D(w̃↓Ã) = N (B↓Ã) ∩ (ã↓Ã)⊥ ∩
D(w̃↓Ã). The sufficient condition given in 4) has been re-
ported in the previous literature [3, 7].

Proof. 1) By Lemma 1, all solutions w̃ ∈ S(x, λ) have the
same `1-norm and the same active sets Ã+, Ã− and Ã. The
invariance of the `1-norm ensures S(x, λ) is bounded. The
continuity of the lasso ojective in w̃ ensures that S(x, λ) is
closed. By Lemma 3, S(x, λ) is convex.

2) (⇐) Assume that w̃(1), w̃(2) ∈ S(x, λ). Let h =
w̃(1)− w̃(2). Then by Lemma 3, any feasible shift vector sat-
isfies h ∈ N (B↓Ã) ∩D(w̃↓Ã); a contradiction unless h = 0.
So the solution is unique.
(⇒) Let S(x, λ) = {w̃}, i.e. w̃ is the unique solution to (1).
If there exists a nonzero h ∈ N (B↓Ã) ∩D(w̃↓Ã), by Lemma
3, w̃ + h satisfies (11) because h ∈ N (B↓Ã), and (12) be-
cause h ∈ D(w̃↓Ã). As a result, w̃ + h is another solution to
(1). Contradiction. So N (B↓Ã) ∩D(w̃↓Ã) = {0}.

In addition, N (B↓Ã) ∩ (ã↓Ã)⊥ ∩ D(w̃↓Ã) = {0} is also
a necessary and sufficient condition. To see its sufficiency,
we only have to additionally prove h = w̃(1) − w̃(2) lies
in (ã↓Ã)⊥, which is readily seen from ãTh = ãT (w̃(1) −
w̃(2)) = ‖w̃(1)‖1 − ‖w̃(2)‖1 = 0. To see its necessity, from
2) we knowN (B↓Ã)∩D(w̃↓Ã) = {0} and clearly 0 is in set,
so N (B↓Ã) ∩ (ã↓Ã)⊥ ∩D(w̃↓Ã) = {0}.

3), 4) If N (B↓Ã) ∩ (ã↓Ã)⊥ = {0} or if N (B↓Ã) = {0},
then the second condition in part 2) is satisfied.

4. CONCLUSION

In this paper we present three structural results on the lasso
problem, covering full-rank represenation, boundedness of
dual feasible set and uniqueness of the lasso solution. An
important contribution of the paper is to point out the impor-
tance of working on the active set Ã determined from the dual
solution, rather than the support set of the primal solution.
The support set of a solution w̃, i.e., the indices i such that
w̃i 6= 0, is always a subset of the active set of the correspond-
ing unique dual solution θ̃ = (x − Bw̃)/λ, but it can be a
proper subset. With help of this active set Ã, we are able to
express the primal solution set explicitly, and close the gap
between sufficient and necessary conditions for the unique-
ness of lasso solution.
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