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ABSTRACT

Orthonormalized partial least squares (OPLS) is a popular multivari-
ate analysis method to perform supervised feature extraction. In this
paper, we propose a novel scheme to solve Orthonormalized Partial
Least Squares (OPLS) that can be easily modified to include addi-
tional constraints over the input data projection vectors. This scheme
is used to implement an OPLS method with sparsity constraints (SO-
PLS), which allows to obtain more interpretable projection vectors
that depend only on a few of the original input variables. The dis-
criminative power of the sparse features extracted by SOPLS is ana-
lyzed on a benchmark of classification problems, where the method
shows very competitive performance in terms of classification error.

Index Terms— Partial least squares (PLS), orthonormalized
PLS, sparse solutions, /asso regularization, feature extraction

1. INTRODUCTION

Multivariate analysis (MVA) methods [1] are extensively used in
many different areas such as machine learning [2], biomedical en-
gineering [3, 4], remote sensing [5, 6], or chemometrics [7], among
others. The need for performing feature extraction and dimen-
sionality reduction is especially important when dealing with high-
dimensional data and/or collinearity among variables. Furthermore,
it could be useful to remove irrelevant or noisy features, providing
more interpretable solutions. One way to do so is by enforcing
sparse solutions, which justifies the large number of research papers
on that topic during the last years [8,9].

Here, we focus on an MVA method known as Orthonormal-
ized Partial Least Squares (OPLS) which is known to be optimum
in the mean square error sense for performing multilinear regres-
sion [10, 11]. This method and its kernel counterpart have shown
to be very competitive also as a pre-processing step in classification
problems [11, 12]. Several recent works have also tried to establish
the connections between OPLS and other MVA and discriminative
methods (see, e.g., [13]). In an attempt to improve the interpretabil-
ity of the solution, a sparse OPLS method was proposed in [3]. Un-
fortunately, this method does not guarantee orthogonality of the pro-
jected input data, and thus it does not converge to the true OPLS
solution, even when the sparsity constraints are removed.

In this paper, we propose a novel formulation for OPLS which
allows an iterative implementation involving two steps: the solution
to an eigenvalue decomposition and a standard least squares prob-
lem. The latter step can easily be modified to include additional
constraints. To illustrate the flexibility of the method, we use it to
implement a novel OPLS algorithm with sparsity constraints on the
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projection vectors (SOPLS). We present both a block method where
all projection vectors are extracted at once, and a sequential proce-
dure that extracts projection vectors one at a time.

The discriminative power of the sparse features extracted by SO-
PLS is analyzed on a benchmark classification problems, showing
very competitive performance in terms of classification error. The
degree of sparsity of the achieved solutions is also illustrated.

2. OPLS FORMULATION

This section reviews the most commonly used formulation of OPLS
and, as an alternative to it, presents a novel method to obtain the
OPLS solution whose main advantage is that it can be easily modi-
fied to include additional constraints. Before that, we briefly review
the notation that will be used in the description of the methods.

Let us assume a supervised learning scenario, where the goal is
to learn relevant features from input data using a set of N training
data {@;,y,}, fori = 1,..., N, where z; € R" and y, € R™ are
considered as the input and output vectors, respectively. Therefore,
n and m denote the dimension of the input and output spaces. In
classification problems, y; will be used to denote the class member-
ship of the ith pattern, e.g., using 1-of-C' encoding [14].

For notational convenience, we define the input and output data
matrices: X = [@1,...,xn]and Y = [y,,...,yy]|. It will be
assumed throughout the paper that these matrices are centered to re-
move any correlation between variables produced by a shift of their
centers of mass [2]. Sample estimation of the input and output data
covariance matrices, as well as their cross-covariance matrix, can be
calculated as Cxx = XX, Cyy = YY" and Cxy = XY,
where we have neglected a scaling factor IV, and superscript T de-
notes vector or matrix transposition.

Input data features are calculated as X' = U X, where U =
[w1,...,un,] is a projection matrix where projection vectors are
arranged columnwise, and 1, < n is the number of projections. The
goal of OPLS is to find the projection vectors so that the projected
data best approximate the output data in a mean square error sense
(MSE); i.e., OPLS minimizes the following loss function [10],

L(W,U) = |[Y - WU X||%, )

where W is an m X n, matrix of regression coefficients that can
alternatively be seen as the projection matrix of the output data,
|Allr = Tr{AAT} denotes the Frobenius norm of A, and Tr{-}
is the trace operator. Note that the above problem is different from
standard least squares regression since matrix U imposes a repre-
sentation bottleneck [10, 13]. Note also that the solution to (1) is
not unique since, e.g., W can compensate any scaling of matrix U.
In the next two subsections we will pay attention to two different
constraints that can be used to make OPLS solution unique.
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2.1. OPLS as a generalized eigenvalue decomposition problem
Rewriting (1) as

L=Tr{Cyy}—2Tr{W'CxyU} 4+ Tr{U CxxUW W}

(@)
suggests that UTCxx U = I can be used to simplify the problem
and to make the minimum of £ unique. In fact, these uncorrelation
and unit variance conditions on the projected data have been the most
frequently used assumptions in the literature to solve OPLS [10, 13].
If we further note that the optimal W' is uniquely determined for
fixed U as the solution to the LS problem stated in (1)

W = CxyU(U CxxU)™' = Cxy U,

it is possible to formulate the OPLS problem as a constrained mini-
mization problem over U only:

argminy £L(W, U)
w=CL,U (3)

Ucey =
st: UlCxxU=1I

Once the optimum projection matrix has been calculated, the corre-
sponding regression matrix will be given by Waey = Cx+y UGev.
Here, subscript ‘GEV’ has been used since, as we show below, the
solution of U can be given in terms of a generalized eigenvalue prob-
lem.

Inserting the constraints indicated in (3) into (2), we see that
OPLS can be written down as the solution to the following maxi-
mization problem:

Ucey = argmaxy Tr{U" CxyCxyU}

4)
s.t.: UTCxxU =1

which is given in terms of the following generalized eigenvalue de-
composition problem:

CxyCxyUsrv = Cxx UgsvAcey )

A further interesting property of the above solution to OPLS can
be obtained if we premultiply both terms of (5) by Uggy. Since
Woeey = Cxvy Ucev and UlgyCxxUcev = 1, it is straightfor-
ward to conclude that W(T,EVWGEV = Aggy, i.e., the columns of
‘Wey are orthogonal.

2.2. OPLS as an eigenvalue decomposition problem

In this subsection, we propose a novel solution to the OPLS problem
that opens the door to more efficient implementations, and to modi-
fied versions that can easily incorporate constraints into the projec-
tion vectors ;. The above orthogonality condition over the regres-
sion coefficient vectors and a detailed examination of (2) suggest that
assuming W' W = I can also be convenient to make the solution
of OPLS unique. When W is given, it can be seen that the projection
matrix that minimizes (1) is

U = CxxCxyW. ©6)

‘We can now formulate OPLS as a constrained minimization problem
over W only:

Wevp =  arg minw £(W, U)
U=Cyy Cxy W @)

st: WIw=1I

where the subscript ‘EVD’ has been used to denote this solution
since, as we show next, it can be obtained from the eigenvalue de-
composition of a certain matrix.

Inserting the orthonormality constraint on W and the expression
for U as a function of W into (2), we can rewrite (7) as

Wevp = arg maxw Tr{W T C{yCxxCxyW}

| ®
st. W W=I
Therefore, the columns of Weyp can be obtained as the n,, leading
eigenvectors of the following problem:

CxyCxxCxyWevp = Weyp Agvp. )

If we compare (9) and (5), we can observe a first advantage of the
proposed OPLS solution: the dimension of the eigenvalue problems
are m and n, respectively, meaning that the new solution is compu-
tationally more efficient for the common case m < n.

An important property for the input projected data can be derived
by first premultiplying both terms of (9) by Wy, which leads to

T AT
WeypCxy Uevp = Agvp

where in simplifying we have used the fact that the columns of
Weyp are orthonormal (W gypWeyp = I). If we further note that
according to (6) Cxy Wgyp = Cxx Ugvp, we arrive at

.
UgvpCxx Urvp = Agvp.

In other words, the OPLS solution guarantees orthogonality of the
projected input data.

Finally, it is easy to see that the solutions to (7) and (3) should
both provide the same value of the cost function £(W,U). This
means that the columns of Uggy and Ugyp should span the same
subspace. In fact, it can be shown that the ith columns of Uggy and
Ukgvp have the same direction, and differ only in a scaling factor.
More explicitly, it can be proved with some simple algebraic manip-
ulations that the following relationship exists between the two OPLS
solutions derived in this section: Agyp = Agev = A, Ugyp =
UcrvAY?, and Weyp = Wey A~ Y2,

3. ITERATIVE OPLS SOLUTION

In this section, we propose a novel iterative scheme for OPLS which
is based on two coupled steps in which W and U are updated by
means of an eigenvalue decomposition and a least squares (LS) prob-
lem.

To start with, let us introduce (6) into the left-hand-side term of
(9) and multiply the resulting expression by its transpose,

CxyUrsvpUgypCxy = Wevp A°Wiyp

If we further postmultiply both terms by WEgyp, we get an alternative
eigenvalue decomposition problem that has to be satisfied by Wgyp:

Cxv UsvdUfyp Cxy Wevp = WevpA' (10)

where A’ = A2. Furthermore, (6) provides another expression re-
lating the optimum OPLS solutions for the projection and regression
matrices.

The proposed iterative solution consists in initializing U and W,
and then repeatedly apply (10) and (6) until some convergence cri-
terion is met. Initialization of the algorithm is not critical, and we
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1. Cxx = XX, Cxy = XY . Compute C;é(‘
2. Initialize U(0) =T € R™*"7. k = 0.
3. k=k+1

4. Obtain W (k) as the solution to the EVD problem stated in (10).

5. Update U using (6): U(k) = Cxx Cxy W (k).

6. Repeat 3—5 until convergence criterion is met.

Table 1. Pseudocode for iterative method for solving OPLS.

will simply initialize U as the identity matrix of size n X n,. Table
1 summarizes the main steps of the proposed algorithm.

The main advantage of this iterative procedure with respect to
the original method in Subsection 2.2 is that the second step [i.e.,
the update of U using (6)] can be reinterpreted as the solution to the
following LS problem

Upvp = argmin [WeypY — U X7 (11)

In this way, we could easily modify this step incorporating addi-
tional constraints to the LS problem (11). In the next section we will
add sparsity constraints, thus allowing us to obtain sparse projection
vectors ;.

A somewhat similar scheme can be found in [3] implementing
orthogonal Procrustes solution. Our scheme and the one in [3] differ
in the W-update step. However, it can be shown that the Procrustes
solution does not provide orthogonality in the projected input data,
preventing it from convergence to the true OPLS solution.

3.1. Sequential OPLS with deflation

In many cases, it is preferred to obtain the projection vectors one by
one. When doing so, the data matrices need to be deflated after each
new projection vector has been obtained (see, e.g. [2]). In our case,
it suffices to deflate the cross-covariance matrix according to

Cxy + Cxy — Cxxuw, (12)

where u; and w; are, respectively, the ith projection and regression
vectors provided by the iterative OPLS scheme.

This deflation scheme can be better understood if we notice that
it is equivalent to the following deflation of the output data matrix:

Y Y — wiu X.
In other words, we remove from Y the best approximation that can
be achieved with the ¢th projection of the input data, u;r X.

When we compute one projection vector at a time, the two steps
of the iterative optimization procedure are significantly simplified:

e The eigenvalue decomposition problem (10) becomes
Cxyuiu; Cxyw; = w;\,,

and it is straightforward to check that the solution is given by

Cxyui
e (13)
[[Chyuill2
where || - ||2 represents the Euclidean norm of a vector.

e The LS problem (11) becomes
w; = argmin |w; Y —u' X||3
u

and the solution is given by

wu; = C;(;nywi. (14)

|| Ntrain/Nlcsl | n | m |

letter 10000 / 10000 | 16 | 26
optdigits 3823 /1797 | 64 | 10
pendigits 7494 / 3498 16 | 10
satellite 4435 /2000 36 | 6
segment 1310/ 1000 18 7

vehicle 500 / 346 18| 4

Table 2. Main properties of the selected benchmark problems.

Therefore, when we wish to obtain the projection vectors in a se-
quential manner (i.e., one at a time), we will simply iterate (13) and
(14) until some convergence criterion is satisfied. The next projec-
tion vector can then be obtained in a similar manner, once the cross-
covariance matrix Cxy has been deflated according to (12).

4. SPARSE OPLS

In this section we explain how the iterative methods for OPLS we
have just described can be modified to incorporate additional con-
straints over the projection vectors; in particular, we will consider
the introduction of sparsity constraints, both for the block case and
for the sequential scheme using deflation.

It is well-known that adding L, regularization favors sparse so-
lutions, making coefficients associated with irrelevant variables zero.
When L; constraints are considered for the projection vectors, we
just need to modify the corresponding cost functions which are min-
imized in the corresponding step of the block or sequential schemes:

Block: Uy, = argmin W'Y —U'X||Z+ MUl (15

Seq.: wir, = argmin|w'Y —u' X|3+ \ifjuli  (16)
u

where ||u|[; and |U| denote the sum of the absolute values of the
components of vector w and matrix U, respectively, and \; is the
regularization parameter. We refer the reader to [15, 16] for good
reviews of optimization methods to solve the above problems.

5. EXPERIMENTS

This section analyzes the capability of the proposed SOPLS ap-
proach to extract a subset of informative and discriminative features
by means of a sparse combination of the original ones. For this
analysis, we have selected six multi-class classification problems
from [17]. Table 2 summarizes their main characteristics.

We will study the performance of the proposed SOPLS method
against the EVD-OPLS (hereafter referred as OPLS) and the sparse
OPLS algorithm proposed in [3]. The latter uses the Procrustes prob-
lem solution to compute W in the iterative SOPLS algorithm, for
this reason, we will denote is as P-SOPLS (Procrustes Sparse OPLS).

Regarding implementation details, OPLS method follows the
steps described in Eq. (6-9) and P-SOPLS follows the procedure
described in [3]. The proposed SOPLS approach uses its sequen-
tial formulation (Eq. (13-16)), initializing matrix W as the identity
matrix and stopping its iterative process when either the cosine dis-
tance,

uj(k‘)uz(k -1)

Al (). wilk = 1) = 1 ) Tws (e = )
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OPLS P-SOPLS SOPLS

OA(%) | OA(%) SR(%) | OA(%)  SR(%)

letter 84,89 84,85 11,33 85,05 10,94
optdigits 94,21 94,27 42,47 95,05 29,93
pendigits 92,08 91,68 39,58 92,22 43,06
satellite 85,7 85,90 17,22 86,10 27,22
segment 92,8 95,60 90,74 94,90 93,52

vehicle 78,32 77,17 25,93 78,03 1,85

Table 3. Overall accuracy (OA) achieved by OPLS, P-SOPLS and
SOPLS algorithms. Sparsity rates (SR) of P-SOPLS and SOPLS
also are included.

achieves a tolerance level of & = 1072 or 500 iterations have
been completed. The regularization parameter, A1, used by SO-
PLS and P-SOPLS approaches has been adjusted by a 10-fold
Cross Validation (CV) process selecting its value from the set
{0,107*,107%° ... ;1071 1071 ).

To test the discrimination capability of the set of features
provided for each feature extraction approach, a linear support
vector machine (SVM) has been trained using as inputs these
new features and selecting parameter C' among the set of values
{1,10, 100, 1000} with a 10-fold CV. In this paper, we use the
LIBSVM implementation [18].

Table 3 shows the overall accuracy (OA) provided by these three
feature selection techniques when the maximum number of projec-
tions (r = rank{Cyx }) is used to train the SVM. In P-SOPLS and
SOPLS methods, the sparsity rate (SR) of the projections vectors,
defined as the ratio between the number of zero elements in U and
the total number of entries, is also included.

It is important to note that problem segment is ill-conditioned
(rank{Cxx} < n) preventing the application of OPLS; for this
reason, PCA has been applied as preprocessing step to reduce the
input data dimension to rank{Cxx }, after which OPLS algorithm
can be applied. This was not necessary for the sparse approaches (P-
SOPLS and SOPLS) since the included L; regularizer makes possi-
ble to solve ill-conditioned problems without any preprocessing step.

Table 3 shows the advantages, in terms of accuracy, of the pro-
posed SOPLS method against OPLS and P-SOPLS. When SOPLS
features are used to train the SVM, OPLS is outperformed in all the
datasets, whereas it improves the P-SOPLS method in terms of OA
for five out of the six problems.

Apart from its increased discrimination capability, the main ad-
vantage of the proposed SOPLS method relies on its sparse formula-
tion that makes it easier to analyze which features do not contribute
to the new projected ones. To carry out this analysis, Figure 1 de-
picts the projection matrices, U, obtained by OPLS, SOPLS, and P-
SOPLS solutions in three representative problems. Looking at these
figures, one can see that in problems presenting a high SR, such as
segment, the feature extraction becomes close to feature selection,
since most features are associated with just one of the original ones.
In satellite, features 8, 31, 32 and 36 are removed from the first pro-
jection vectors (the most important ones) of the SOPLS algorithm.
An additional advantage of the proposed method, in comparison to
P-SOPLS, is that the solution provided by SOPLS tends to be more
similar to that of OPLS, as it can be seen in letter and satellite.

This last advantage can be analyzed in detail in Fig. 2 where we
display the OA against the number of used projections (1 < k < r)
in four problems. The proposed SOPLS method generally outper-
forms P-SOPLS when less than r features are extracted. This in-
creased performance is due to the orthogonality imposed by the pro-

OPLS P-SOPLS SOPLS
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Fig. 1. Representation of the projection matrix U (n X n,) in OPLS,
P-SOPLS, and SOPLS for three representative problems.
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Fig. 2. Overall Accuracy (OA) (%) provided by OPLS, SOPLS, and
P-SOPLS algorithms for different number of features k. SR achieved
when all projections (k = r) are used is shown in the legend.

posed SOPLS formulation, which is not enforced by the P-SOPLS
solution.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel OPLS formulation which allows an it-
erative implementation combining two steps: a standard LS problem
to obtain the projection vectors, and an eigenvalue decomposition to
compute the regression coefficients. The main advantage of this for-
mulation is its flexibility to include additional constraints. In particu-
lar, we analyze its extension to a sparse OPLS formulation (SOPLS).
Experimental results show the discriminative power of the SOPLS
features in comparison to those provided by OPLS and a previous
sparse OPLS approach.

Future work deals with non-linear formulations, as well as an
extension with group-lasso constraints to combine the feature ex-
traction process with a selection one.
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