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ABSTRACT

Nonparametric Bayesian models are often preferred over parametric
models due to their superior flexibility in interpreting data. A strong
motivation for the use of these models is the desire of avoiding the
assumptions that are necessary for parametric models. A prominent
place in Bayesian nonparametrics is played by the Dirichlet process,
which is defined by a base measure and a concentration parameter. In
this paper, we propose the construction of models based on products
of Dirichlet processes and corresponding mixture models. We show
how these processes can be used for classification of data with shared
features. The proposed processes are different from the recently
introduced hierarchical Dirichlet processes. We show the use of
the proposed model on classification of multivariate time series and
demonstrate its performance with computer simulations.

Index Terms— Dirichlet processes, collapsed Gibbs sampling,
Dirichlet mixture models

1. INTRODUCTION

Nonparametric Bayesian methods are steadily gaining interest in
the machine learning community [1, 2, 3]. A central place
in nonparametric Bayesian theory is occupied by the Dirichlet
processes (DPs) [4, 5]. A DP is defined by a base measure (or
base distribution) H and a concentration parameter α > 0, and it
produces draws of discrete distributions with probability one. In
applications, where we have to classify data, we use DP mixture
(DPM) models [6, 7, 8], where the classes and their parameters are
generated from DP(α,H), and the data for parametric distributions
given the drawn parameters from a distribution F [9]. The mixture
model in principle may be with a countably infinite number of
clusters. A typical implementation of classification is carried out
by Markov chain Monte Carlo sampling [10].

The classification with DPM models proceeds in a non-
supervised fashion, and it does not require information about the
number of classes of the data [5]. In theory, this number can grow
to infinity as the number of data for classification grows to infinity.
With DPMs, classification is combined with the task of determining
the number of classes. If there are new data, one does not have to
restart the classification process, and instead, the new data either join
one of the existing classes or they form a new class.

A relatively recent development in nonparametric Bayesian
methods has been the introduction of hierarchical DPs [11]. They
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were developed with the intent to model groups of data, where
observations from a group are draws from a mixture model and
where the groups share mixture components. More precisely, if
G0 is a global probability measure drawn from DP(α,H), one then
defines Gj |α0, G0 to be generated from DP(α0, G0). For such a
hierarchical DP, one can construct a hierarchical DPM model.

In this paper, we propose a completely different construction
of models sharing mixture components than that followed by
hierarchical DPs. It is based on a product of DPs (PDPs) and
with it we can readily obtain PDP mixture models. We show how
these models are used for classifying multivariate time series and
demonstrate their performance with simulations.

The structure of the paper is as follows. In the next section,
we review the standard Dirichlet mixture models. In Section 3, we
introduce the notion of PDPs. An example that shows how we use
the novel PDP mixture model for classification is provided in Section
4. Simulation results of classification are presented in Section 5 and
conclusions in Section 6.

2. STANDARD DIRICHLET MIXTURE MODELS

We first recall the definition of a DP. Suppose H is a probability
measure over (Ω,F), where (Ω,F) is some measurable space.

Definition [4]: The random probability measure G defined over
(Ω,F) is distributed according to the DP(α,H), where α > 0, if
for any finite partitionA1, A2, · · · , Ak, of Ω,

(
G(A1), G(A2), · · · ,

G(Ak)
)

is distributed according to the Dirichlet distribution defined
by (

G(A1), · · · , G(Ak)
)
∼ Dir

(
αH(A1), · · · , αH(Ak)

)
. (1)

In (1), the probability measure H is referred to as base measure
and α as concentration parameter.

We can obtain a realization of a DP(α,H) by the following
scheme: If in the previous n − 1 samples, the different number of
labels is L,

1. Generate labels according to

zn|{z1, z2, · · · , zn−1} ∼

{
pl = nl

α+n−1
, l = 1, 2 · · · , L

pL+1 = α
α+n−1

, l = L+ 1,

(2)
where nl is the number of samples with label l, and

2. Generate atoms θk from H , i.e,

θk ∼ H. (3)
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We represent the obtained realization by

p(θ) =

∞∑
k=1

wkδθk , (4)

where
∑∞
k=1 wk = 1.

For this process we have the well-known Chinese Restaurant
Process (CRP) metaphor. It goes as follows: a customer comes to
an empty Chinese restaurant and is seated at table 1 where one type
of dish is served. The second customer comes in and the customer is
seated at the first table with probability 1/(α + 1) or at the second
table (that serves another dish) with probability α/(α + 1). The
nth customer comes in when there are L tables occupied. The
probability that a customer joins table i, where i ≤ L ≤ n − 1
is given by

pi =
ni

α+ n− 1
, (5)

where ni is the number of customers already seated at table i, and
the probability of the customer being seated at a new table is

pL+1 =
α

α+ n− 1
. (6)

The mean and the variance of G(A) are given by E
(
G(A)

)
=

H(A) and Var
(
G(A)

)
= H(A)(1−H(A))/(α+ 1), respectively.

Clearly, the base distribution is the mean of the DP, and the value of
the concentration parameter α affects the variance of the DP.

We pointed out that for classification, one uses Dirichlet mixture
models. The implementations of classification are iterative schemes
where in each iteration the considered data are classified into an
existing class or a new one according to probabilities that are
computed from the DP mixture model. In computing the relevant
probabilities, one needs to find the predictive distributions of the data
conditioned on the considered class and the data already classified
in that class. If we denote all the data with Y and there are n data
yi, i = 1, 2, · · · , n, the predictive distribution of yi is a mixture
distribution given by

p(yi|Y−i,D−i) ∝ α

n− 1 + α
p(yi|new class)

+
∑
cj

ncj ,−i

n− 1 + α
p(yi|Ycj ,−i), (7)

where D−i are the current decisions of classification made about all
the data except for yi, Y−i is the set of all data except yi, Ycj is the
set of data classified in cj , and ncj ,−i is the number of data in class
cj .

3. MODELS WITH MULTIPLE DIRICHLET PROCESSES

We propose the construction of a process from two “elementary”
DPs, DP(α1, H1) and DP(α2, H2), as follows:

1. For i = 1, 2, generate labels independently by

zi,n|zi,1, · · · , zi,n−1 ∼

{
pi,l =

ni,l

αi+n−1
, l = 1, 2 · · · , Li

pi,Li+1 = αi
αi+n

, l = Li + 1,

(8)
where i = 1, 2.

2. Generate atoms θi,k by

θi,k ∼ Hi, i = 1, 2. (9)

We represent the obtained realization by

p(θ) =

∞∑
k1=1

∞∑
k2=1

w1,k1w2,k2δθ1,k1
,θ2,k2

(10)

=

∞∑
k1=1

w1,k1δθ1,k1

∞∑
k2=1

w2,k2δθ2,k2
, (11)

where
∑∞
k1=1

∑∞
k2=1 w1,k1w2,k2 = 1. We can show that this

process is not a DP; however, its marginals are DPs.
For this process we have a modified CRP metaphor. A customer

comes to an empty Chinese restaurant where the tables are ordered
on a grid. The customer is seated at table 1 (located at the northwest
corner of the restaurant, and denoted by (1, 1)), where two types of
dishes are served. The second customer comes in and the customer is
seated at the same table (1, 1) as the first customer with probability

p1,1 =
1

(α1 + 1)(α2 + 1)
, (12)

or at the second table in the first row, (1, 2), with probability

p1,2 =
α2

(α1 + 1)(α2 + 1)
, (13)

or at the second table in the first column, (2, 1), with probability

p2,1 =
α1

(α1 + 1)(α2 + 1)
, (14)

or at table (2, 2) with probability

p2,2 =
α1α2

(α1 + 1)(α2 + 1)
. (15)

Suppose that by the time customer n comes in, the maximum row
with an occupied table is L1 and the maximum column is L2. The
customer may join any of the tables from row 1 to row L1 + 1 and
column 1 to column L2 + 1. We define the probability that the
customer will be seated at a table in row i by

pi,∗ =
ni,∗

α1 + n− 1
, i ≤ L1, (16)

where ni,∗ is the total number of customers sitting in row i, or

ni,∗ =

L2∑
j=1

ni,j , (17)

and the probability that the table will be in row L1 + 1 by

pL1+1,∗ =
α1

α1 + n− 1
. (18)

Similarly, we have that a customer will sit at a table in column j with
probability

p∗,j =
n∗,j

α2 + n− 1
, j ≤ L2, (19)

where n∗,j is the total number of customers sitting in column j, i.e.,

n∗,j =

L1∑
i=1

ni,j , (20)

and the probability that the table will be in column L2 + 1 by

p∗,L2+1 =
α2

α2 + n− 1
. (21)
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Then the probability that the customer will join a table in row i and
column j, where i ≤ L1 + 1, j ≤ L2 + 1, is given by

pij = pi,∗p∗,j . (22)

More specifically, we can write

pi,j = =


ni,∗n∗,j

(α1+n−1)(α2+n−1)
, i ≤ L1, j ≤ L2

α1n∗,j
(α1+n−1)(α2+n−1)

, i = L1 + 1, j ≤ L2
ni,∗α2

(α1+n−1)(α2+n−1)
, i ≤ L1 + 1, j = L2

α1α2
(α1+n−1)(α2+n−1)

, i = L1 + 1, j = L2 + 1.

(23)

Clearly, we note that the process defined here has a richer
structure than a DP(α,H) that produces atoms according to

p(θ) =

∞∑
k=1

wkδθ1,k,θ2,k . (24)

In the CRP described by (10), two different dishes are served on
each table, and the process allows the tables to have the same first
dish but different second dish and vice versa, the same second dish
but different first dish. By contrast, the process (24), which formally
also has two dishes per table, does not have this flexibility. In other
words, the process (24) only occupies the tables (i, i) on the diagonal
of the restaurant, whereas the process (10) can occupy off-diagonal
tables too. We note that with the parameters α1 and α2, we can tune
how quickly the numbers of new rows and columns, respectively,
grow with the arrival of new customers.

The process defined here can further be generalized by adding
more dishes on every table. The introduction of mixture models with
these processes that can be used for classification is straightforward.
The classification can be implemented iteratively adapting the
algorithm #3 described in [10].

4. AN EXAMPLE

We present the use of the new model for classification of multivariate
data series.

Suppose we observe a set of multivariate data series Yk, k = 1 :
n where Yk ∈ R`×t is in class ci,j when,

Yk = Θci,∗Xk + Ωc∗,jZk + Uk, k = 1 . . . n,

where

• Θci,∗ ∈ R`×q and Ωc∗,j ∈ R`×q are unknown matrices,

• Xk ∈ Rq×t and Zk ∈ Rq×t are known,

• Uk ∈ Rl×t is a random matrix of model errors where Uk
is distributed according to a matrix normal distribution [12],
i.e.,

Uk ∼ MN`,N (U |0, σ2I).

We consider that a matrix M ∈ Rm×l is matrix normal
distributed with mean µ and covariance Σ, noted as M ∼
MNm,l(M |µ,Σ), if the columns of M are independent and
normally distributed with covariance Σ.
The Uk are assumed independent and σ2 is known.

In the last part of this section, we describe the steps in computing
the predictive distribution p(Yk|Y−k, C−k, ci,j): the predictive
distribution of Yk, computed at Yk, given the set of data records

Y−k = {Yi, i = 1 : n, i 6= k}, their corresponding classes C−k,
and assuming that Yk belongs to class ci,j .

p(Yk|Y−k, C−k, ci,j) =

∫
F (Yk;φci,j )p(φci,j |Y−k, C−k)dφci,j ,

(25)
where in our case φci,j = (Θci,∗ ,Ωc∗,j ) and F (Yi;φci,j ) denotes
the likelihood of Yi. It is important to note that in computing the
posterior distribution p(φci,j |Y−k, C−k) we use the base measure of
the DP process H as a prior.

More specifically, we assume H is a product of matrix normal
distributions, i.e.,

(Θci,∗ ,Ωc∗,i) ∼ MN`,q(Θci,∗ |0, η
2I)MN`,q(Ωc∗,i |0, η

2I), (26)

where the parameter of the prior η2 is assumed known.
We denote by Y(r,s), X(r,s), Z(r,s) the ` × t(r,s) and q × t(r,s)

matrices obtained by concatenation of the Yq , Xq and Zq , q 6= k,
classified in cr,s, i.e., with parameters (Θr,Ωs), where we have
assumed without loss of generality that cr,∗ = r, r ∈ {1 . . . , L1}
and c∗,s = s, s ∈ {1 . . . , L2}. We have,

Y(r,s)|Θr,Ωs ∼MN`,t(r,s)(Y |ΘrX(r,s) + ΩsT(r,s), σ
2I).

It is then possible to merge all the elements of Y−k in an `×(n−1)t
matrix as follows:

Y = (Y(1,1), . . . , Y(1,L2), Y(2,1), . . . , Y(2,L2), Y(3,1) . . .).

We can write in matrix form

Y−k = ΓT−k + U−k, (27)

where

Γ = (Θ1, . . . ,ΘL1 ,Ω1, . . . ,ΩL2), T−k =

(
T1

T2

)
,

T1 =


X(1,1) · · · X(1,L2) 0 · · ·

0 · · · 0 X(2,1) · · · X(2,L2)

0 · · · · · · 0 · · ·
...

... · · ·

 ,

T2 =


Z(1,1) 0 · · · 0 Z(2,1) 0 · · ·

0 Z(1,2)

. . .
. . . Z(2,2)

. . .
...

. . .
. . .

. . .
. . .

. . .
0 · · · 0 Z(1,L2) 0 · · · 0

 .

Note that if the class cr,s is empty, the corresponding Y(r,s) in
Y and the columns of T1 and T2 containing X(r,s) and Z(r,s) are
removed. If the number of non-empty classes is M ≤ L1L2, the
number of block matrices in T1 is L1 ×M and in T2 is L2 ×M .
The size of T1 is qL1×(n−1)t and the size of T2 is qL2×(n−1)t.

With this notation,

Γ ∼ MN`,q(L1+L2)(0, η
2I, I), (28)

U ∼ MN`,(n−1)t(0, σ
2I, I). (29)

Similarly to (27), we can write

Yk = ΓTk + Uk (30)

where Tk is a q(L1 +L2)× t matrix constructed in the same way as
T−k with Xk and Zk in the appropriate place.
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The application of classical results of Bayesian linear regression,
see for example [13], to model (27), (30) with assumptions (28,29)
shows that the predictive distribution of Yk|Y−k is multivariate
normal. More specifically,

Yk|Y−k, C−k, ci,j ∼ MNYk|`,t(µp, I,Σp),

where
µp = µΓTk, Σp = σ2I + T>k ΣΓTk.

The matrices µΓ and ΣΓ are the mean and covariance of the posterior
distribution Γ|Y ∼ MN`,q(L1+L2)(Γ|µΓ,ΣΓ) with

ΣΓ = (σ−2T−kT
>
−k + η−2I)−1, µΓ = σ−2ΣΓY−kT

>
−k.

The computation of ΣΓ and µΓ require computation of T−kT>−k and
Y−kT−k, which involve the large matrices T−k and Y−k. These
matrix products can be realized efficiently using the block structure
of T−k. Compact expressions are not reported here for lack of space.

The classification algorithm will also require the computation of
the predictive distribution (25) when the classes ci,∗ or/and c∗,j are
empty.

5. SIMULATION RESULTS

The hyperparameters of the prior and the variance of the noise were
set to η2 = 1 and σ2 = 1.5 with ` = 2, q = 3, t = 5, and n = 9.
The number of iterations of the Gibbs sampler was fixed to 500 and
the burn-in period to 50.

Experiment #1
In the first experiment, the data were generated according to

three classes which are detailed in the following table:

PARAMETERS OF THE 3 CLASSES – EXPERIMENT # 1
Yi i = 1 : 3 Θ1 ∼MN 2,3(Θ|0, I) Ω1 ∼MN 2,3(Θ|0, I)
Yi i = 4 : 6 Θ1 Ω2 ∼MN 2,3(Θ|0, I)
Yi i = 7 : 9 Θ2 ∼MN 2,3(Θ|0, I) Ω3 ∼MN 2,3(Θ|0, I)

The two concentration parameters were α1 = α2 = 0.1. The
results obtained from a single realization are presented in Fig. 1. The
first three plots are the histograms of the number of classes w.r.t.
Θ, Ω and (Θ,Ω). The histograms were obtained from the samples
of the Markov chain. The third plot shows the “confusion matrix”
estimated from the samples of c1, . . . , cn|Y . The pixel (i, j) in the
plot represents the probability that Yi and Yj are in the same class.

These plots clearly show that the number of classes is correctly
estimated, and the classification of Yi is correct. The left plot of
Fig. 2 gives the results obtained under the same conditions with a
standard DP. Both classifiers behave similarly.

The right plot of Fig. 2 gives the result obtained with a PDP
mixture model when α1 = 0.1 and α2 ≈ 0. In this case, as
expected, the classification is performed only w.r.t. Θ, leading to
2 classes: the first one contains {Yi, i = 1 : 6} and the second one
{Yi, i = 7 : 9}. This possibility clearly shows the flexibility of our
model.

Experiment #2
In the second experiment, the parameters of the three classes

were

PARAMETERS OF THE 3 CLASSES – EXPERIMENT # 1
Yi i = 1 : 3 Θ1 ∼MN 2,3(Θ|0, I) Ω1 ∼MN 2,3(Θ|0, I)
Yi i = 4 : 6 Θ1 Ω2 = 2Ω1

Yi i = 7 : 9 Θ2 ∼MN 2,3(Θ|0, I) Ω3 ∼MN 2,3(Θ|0, I)
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Fig. 1: EXPERIMENT #1. Left: Histogram of the number of classes.
Right: Estimated posterior probability of Yi and Yj being in the same
class. The red boxes indicate the true classes. α1 = α2 = 0.1.
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Fig. 2: EXPERIMENT #1. Left: Classification with a standard DP,
α = 0.1. Right: Classification with a PDP with α1 = 0.1, α2 ≈ 0
in order to classify w.r.t. Θ.

The left plot of Fig. 3 gives the result obtained with a DP and
α = 0.1. Similar results are obtained with a PDP using parameters
α1 = α2 = 0.1. The classifiers show difficulties with these
parameters. The right plot of Fig. 3 gives the result obtained with a
PDP and α1 = 0.1, α2 = 1. This set of parameters allows a correct
separation of the 3 classes.

6. CONCLUSION

In this paper, we proposed products of DPs as a basis for building
mixture models for classification. With these models we allow for
sharing of mixture components of classes of data. We showed how
this modeling can be used for classification of multivariate time
series. The obtained results were used in computer simulations.
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Fig. 3: EXPERIMENT #2. Left: Classification with a standard DP
with α = 0.1 or a PDP with α1 = α2 = 0.1. Right: Classification
with a PDP with α1 = 0.1, α2 = 1.
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