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ABSTRACT

Discovering the intrinsic low-dimensional structure from high-
dimensional observation space (e.g., images, videos), in many cases,
is critical to successful recognition. However, many existing non-
linear manifold learning (NML) algorithms have quadratic or cubic
complexity in the number of data, which makes these algorithms
computationally exorbitant in processing real-world large-scale
datasets. Randomly selecting a subset of data points is very likely
to place NML algorithms at the risk of local optima, leading to poor
performance. This paper proposes a novel algorithm called Locality
Preserving KSVD (LP-KSVD), which can effectively learn a small
number of dictionary atoms as locality-preserving landmark points
on the nonlinear manifold. Based on the atoms, the computational
complexity of NML algorithms can be greatly reduced while the
low-dimensional embedding quality is improved. Experimental
results show that LP-KSVD successfully preserves the geometric
structure of various nonlinear manifolds and it outperforms state-of-
the-art dictionary learning algorithms (MOD, K-SVD and LLC) in
our preliminary study on face recognition.

Index Terms— Dimensionality reduction, Manifold learning,
Dictionary learning, Sparse coding, Face recognition

1. INTRODUCTION

One of the central tasks in signal analysis and pattern recognition
is to seek effective representations for real-world high-dimensional
data [1]. Dimensionality reduction is an important technique that
discovers the most succinct and intrinsic forms of representation of
the original high-dimensional data, allowing more effective learning
and prediction. Linear dimensionality reduction algorithms e.g.,
Principle Component Analysis (PCA) [2], Linear Discriminative
Analysis (LDA) [3], have been widely applied in the past decades
due to their simplicity and efficiency. Such algorithms, however,
typically are not capable of exploiting the nonlinear structure of a
data manifold and therefore are not suitable for processing complex
datasets [4]. In recent years, nonlinear manifold learning (NML)
algorithms have been developed to effectively discover the intrinsic
low-dimensional structure of the nonlinear manifold. Examples
are ISOMAP [5], Locally Linear Embedding (LLE) [6], Hessian
LLE [7], Laplacian Eigenmap [1], Diffusion map [8], Local Tangent
Space Alignment (LSTA) [9], etc.

However, many current NML algorithms are of quadratic or cu-
bic complexity in the number of data, which diminishes the appli-
cability of these algorithms in real-world large-scale datasets [10].
Efforts have been made on selecting a subset of training data as land-
mark points on the manifold to improve the efficiency of NML al-
gorithms. Landmark points are meaningful points that preserve the
local geometric structure of a manifold. Silva and Tenenbaum [11]
suggested using a subset of randomly selected data points, which,
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Fig. 1: Overview of the proposed method. Given training data in
high-dimensional observation space, a representational and locality-
preserving dictionary is learned. Then, the low-dimensional embed-
ding of the atoms is computed via some NML algorithm. Finally, us-
ing the geometric relationships among training data and the atoms in
observation space, the low-dimensional embedding of training data
is reconstructed as linear combinations of the low-dimensional em-
bedding of the atoms.

however, is susceptible to local optimum leading to poor perfor-
mance. The authors of [10] proposed to use LASSO (Least Absolute
Shrinkage and Selection Operator) regression for selecting landmark
points, which is of high computational cost due to the ℓ1 minimiza-
tion. Thus, it is still an open and challenging problem of learning
landmark points effectively.

This paper proposes a novel algorithm–Locality Preserving
KSVD (LP-KSVD)–to learn a compact, representational, and
locality-preserving dictionary. The overview of the proposed method
is illustrated in Fig. 1. From the training set, a small number of atoms
are learned as landmark points. NML algorithms can very efficiently
compute the low-dimensional embedding of these landmark atoms.
Then, based on the atoms, the original high-dimensional manifold
as well as the low-dimensional embedding can be accurately recon-
structed via locally linear representation [12]. Learning a dictionary
of landmark atoms has the advantages of robust to outliers, ran-
dom initialization, imbalanced data distribution and allowing better
generalization capability.

Our work is different from sparse coding e.g., K-SVD [13], the
method of optimal directions (MOD) [14], since 1) the employed
local coding has closed-form solution and is more efficient com-
pared to sparsity driven algorithms, e.g., Orthogonal Matching Pur-
suit (OMP) [15]; 2) the dictionary is optimized for both its capability
in representation and its locality preservation capability, which is in
contrast to sparse coding which only solves for a representational
dictionary. Experimental results support the promising performance
of LP-KSVD.
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2. RELATED WORK

Sparse coding expresses an input signal succinctly by only a few
atoms from a dictionary or codebook. This model has been suc-
cessfully applied to a variety of problems in image processing and
computer vision such as image restoration [16–18], image denois-
ing [13, 14, 19], image classification [20–22], etc. In particular,
Aharon et al [13] developed K-SVD to efficiently learn an overcom-
plete dictionary from training data and achieved impressive results
on image denoising and image compression. K-SVD only focuses
on optimizing a representational dictionary without considering the
locality-preserving capability of the dictionary. Another similar al-
gorithm is the method of optimal directions (MOD) [14]. Moreover,
sparse coding algorithms are typically of high computational com-
plexity due to the stage of solving sparse coefficients.

Locality-based coding is recently developed [23, 24]. Specifi-
cally, Yu et al. [23] introduced Locally Coordinate Coding (LCC)
to approximate nonlinear functions as a linear combination of an-
chor points and experimentally showed that locality can be more
essential than sparsity in representing data distributed on nonlinear
manifold. Unfortunately, their coding strategy is based on a modifi-
cation of LASSO and hence is still computationally expensive. For
the purpose of efficient learning, Wang et al. [24] further proposed
Locality-constrained Linear Coding (LLC) as a fast approximation
to LCC and achieved state-of-the-art results on image classification.
Nevertheless, little efforts has been made on learning a representa-
tional and locality-preserving dictionary to improve the performance
of NML algorithms.

3. PROPOSED METHOD

3.1. Problem Formulation

Let Y = [y1,y2, . . . ,yN ] ∈ Rm×N be the training set, which
contains m-dimensional N samples. Suppose yi reside on a smooth
manifold of intrinsic dimension n (n ≪ m), which is embedded into
Rm. The goal here is the joint achievement of two objectives. First is
establishing a compact dictionary D = [d1,d2, . . . ,dK ] ∈ Rm×K

such that linear combinations of di can approximate the nonlinear
manifold M ⊂ Rm. As we have no access to the true M, D is
estimated based on Y. The second objective is learning di as land-
mark points, which are capable of preserving the locality on M. The
dictionary learning problem (LP-KSVD) is thus formalized as:

< D,X >= argmin
D,X

∥Y −DX∥2F (1)

s.t.
{

xij = 0 if di /∈ Ωτ (yj) ∀i, j
1Txj = 1 ∀j

where the reconstruction error term measures the fitness of D to Y;
the matrix X ∈ RK×N contains N local reconstruction codes, with
xj being the code for reconstructing yj ; and Ωτ (yj) denotes the
neighborhood containing τ nearest dictionary atoms of yj in terms
of Euclidean distance. We call the first constraint local cardinality
constraint, which requires that every training sample can only be re-
constructed by its τ nearest-neighbor dictionary atoms. The second
constraint allows the reconstruction coefficients to be invariant to
translation of the data [6]. In order to achieve faithful reconstruction,
Yu et al. [23] suggested that di be sufficiently close to M. More-
over, to learn di as landmark points, we further require each di to
be locally representational with respect to a small patch on M. We
will show that satisfying this requirement, the proposed LP-KSVD
algorithm can effectively achieve the aforementioned two objectives.

3.2. Optimization

The proposed LP-KSVD solves Eq. (1) iteratively by alternating be-
tween the two variables, i.e., we first fix D and solve for the best co-
efficient matrix X and then, we update D as well as X [13] jointly.
The iterations are terminated if either the objective function value is
below some preset threshold or a maximum number of iterations has
been reached.

3.2.1. Solving for local reconstruction codes

Fixing D which is initialized or learned from previous iteration, the
X defined in Eq. (1) can be obtained by equivalently solving [6]:

min
xj∈X

∥∥∥∥∥yj −
K∑
i=1

xijdi

∥∥∥∥∥
2

2

(2)

s.t.
{

xij = 0 if di /∈ Ωτ (yj) ∀i
1Txj = 1 ∀j

where xj represents the j-th column in X, containing linear repre-
sentation coefficients for reconstructing yj , and xij is the i-th el-
ement in xj . Let x̂j be a subvector containing only the nonzero
elements in xj . The closed-form solution to Eq. (2) is given as [6]:

x̂j = (G+ ηI)\1 (3)

and

x̂j = x̂j/
∑

x̂ij , (4)

where G = (Ωτ − yj1T)T(Ωτ − yj1T) is the local covariance
matrix, η is a small constant to secure numerical stability and the
operator \ means matrix inversion1. Here, we write Ωτ (yi) as Ωτ

for simplicity.

3.2.2. Local Dictionary Optimization

In this step, we continue to minimize the objective function by up-
dating D and X jointly. We optimize each dictionary atom indi-
vidually. Denoting the k-th atom in D as dk ∈ Rm and the k-th
row of X as xk∗ ∈ R1×N , we update dk as follows. First, let
Ek = Y −

∑
t ̸=k

dtxt∗; next, minimize ∥Ek − dkxk∗∥2F with re-

spect to dk and xk∗. As ∥Ek − dkxk∗∥2F is only affected by the
ω = ∥xk∗∥0 nonzero entries in xk∗, it can be equivalently mini-
mized by solving:

< dk, x̃k∗ >= arg min
dk,x̃k∗

∥Ẽk − dkx̃k∗∥2F , (5)

where Ẽk contains the ω error columns from Ek, which only asso-
ciates with the nonzero entries in xk∗, i.e., the succinct row vector
x̃k∗ ∈ R1×ω . Actually, minimizing Eq.(5) yields simultaneous up-
date of dk and x̃k∗ but only dk is of our interest as the output of the
algorithm.

KSVD [13] simply treats Eq.(5) as a rank-1 matrix approxima-
tion problem, and solves the best shape for dk. This, however, only
yields a representational D, and has no guarantee of preserving the
local geometric structure of M. In order to learn atoms as land-
mark points, we enforce each atom to be locally representational
with respect to a small patch on M. Recall that the local cardinality

1We have followed the same notation as [6, 24]. For detailed derivation
of Eq. (3)(4), please refer to [6] or http://www.cs.nyu.edu/ roweis/lle/.
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constraint requires each yj to be reconstructed by its nearest dictio-
nary atoms. We therefore define Λ as a small patch on M, which is
a neighborhood set containing the ω training samples that are con-
currently choosing dk as one of their nearest neighbors. Thus, by
jointly achieving the minimization of Eq.(5) and the best local rep-
resentation with respect to Λ, we are able to learn a representational
and locality-preserving D.

Proposition 1 (Local Dictionary Optimization). Let Λ ∈ Rm×ω be
a small neighborhood containing ω training samples that concur-
rently select dk ∈ Rm as a nearest neighbor. Let Ẽk ∈ Rm×ω be
the error matrix corresponding to Λ. Define the local representation
error (LRE) as

∑
yi∈Λ

∥dk −yi∥22. Then, the dnew
k and the x̃new

k∗ that

minimize ∥Ẽk−dkx̃k∗∥2F and yield the minimum LRE are given as:

U∆VT = Ẽk

dnew
k = su (6)

x̃new
k∗ =

∆(1, 1)vT

s
(7)

s =
1

ω

∑
yi∈Λ

uT

∥u∥2
yi (8)

where u and v are the first columns of U and V; s is the gain factor
(scale) of dnew

k .

Proof. We adopt a sequential optimization strategy. On minimizing
∥Ẽk − dkx̃k∗∥2F , applying SVD yields an optimal rank-1 matrix
approximation solution as

U∆VT = Ẽk

dnew
k = u (9)

x̃new
k∗ = ∆(1, 1)vT (10)

where u and v are the first column of U and V. Note that u is a unit
vector indicating the shape (direction) of dnew

k . Then with u fixed,
the gain factor s of dnew

k that minimizes LRE can be obtained by
solving

min
s

∑
i

∥(s u
∥u∥2

− yi)∥22

s.t. yi ∈ Λ (11)

and the optimal s is given by

s =
1

ω

∑
yi∈Λ

uT

∥u∥2
yi. (12)

Without affecting the closest rank-1 matrix approximation to Ẽk,
simultaneously multiplying the right hand side (RHS) of Eq. (9) and
dividing the RHS of Eq. (10) by s yields the desired updates.

As LP-KSVD essentially minimizes reconstruction error in the
same way as K-SVD [13], convergence to a local minimum is guar-
anteed.

3.3. Test Sample Embedding

Having obtained D ∈ Rm×K , its low-dimensional embedding B ∈
Rn×K , where n < m, can be computed by a particular NML algo-
rithm. Given a test sample z ∈ Rm, its low-dimensional embedding

h ∈ Rn can be linearly reconstructed as h = Bx, where x is the
local reconstruction code of z over D, as recommended in [6].

4. EXPERIMENTAL RESULTS

In this section, we first demonstrate the capability of the proposed
LP-KSVD in preserving the local geometric structure of manifolds,
by visualizing the dimensionality reduction results on several syn-
thetic datasets. Then, the performance of LP-KSVD is further ver-
ified over two popular face recognition databases, i.e., Extended
YaleB Database [25] and CMU PIE Database [26]. The parameter τ
is set to 2 uniformly.

4.1. Visualization on Synthetic Datasets

The 3-dimensional synthetic datasets2 employed are shown in Fig.2.
To demonstrate the wide applicability of LP-KSVD to various NML
algorithms, Hessian LLE [7], Laplacian Eigenmap [1] and LLE [6]
are employed to Swiss Hole, noisy Toroidal Helix, and Gaussian,
with the number of nearest neighbors k = 6, 3, 8 respectively.

In Fig.2, from the top row to the bottom row are the visualiza-
tions (3D manifold and 2D embeddings) of 3000 training data, ran-
domly selected K training samples, K dictionary atoms learnt by
LP-KSVD, and 2000 test data. Over all these datasets, the dictionary
atoms are learned as landmark points equidistributed on the original
3D manifold and preserve well the local geometric structure, e.g.,
the non-convex region (hole) in Fig.2(a), the ring-shape and con-
nectivity in Fig.2(b) and the curvature shape in Fig.2(c). Moreover,
the smooth color displayed by the 2D embeddings verifies that test
samples are successfully mapped into the subspace spanned by the
dictionary atoms. In contrast, as shown in the 2nd row of Fig.2,
NML algorithms have difficulty in computing low-dimensional em-
beddings over a small number of randomly selected training sam-
ples, due to the nonuniform distribution of data points.

4.2. Face Recognition

The Extended YaleB Database contains 2414 frontal face images of
38 subjects [25]. For each subject, we randomly select half of the
images (about 32 per person) for training and the other half for test-
ing. As in [27], we use a subset of the CMU PIE Database [26], i.e.,
C05, C07, C09, C27, and C29, in which images are nearly frontal
poses and are taken under varying conditions of illumination and ex-
pression. The subset yields a total number of 11554 images with
about 170 images per subject. Following [27], a random selection of
130 images per person are employed to form the training set, and the
rest of the database are for testing. For both databases, the images
are normalized to 32× 32 pixels and are preprocessed by histogram
equalization.

We evaluate LP-KSVD and compare it with MOD [14], K-
SVD [13] and the recently proposed LLC [24] by classifying test
images embedded in the low-dimensional subspace spanned by
dictionary atoms. For all dictionary learning (DL) algorithms, a
structured dictionary is learned as D = [D1,D2, . . . ,DC ], where
Di is the sub-dictionary for class i. We initialize all DL algorithms
with 8 atoms per subject, which yields a dictionary of 304 atoms
for Extended YaleB Database and a dictionary of 544 atoms for
CMU PIE Database. Linear and nonlinear dimensionality reduction
are performed by PCA and LLE respectively. The nearest neighbor

2Accessible at:http://www.math.ucla.edu/∼wittman/mani/
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Fig. 2: Visualizing dimensionality reduction results on synthetic datasets.

(NN) classifier is employed. We report recognition rate as the av-
erage over 30 repetitions. The sparsity factor of OMP [15] is set to
16 for MOD and K-SVD, as recommended in [22]. Increasing the
sparsity factor can lead to a marginal accuracy improvement but will
cause significant higher computation time [28].

We choose All Train as the baseline method, which represents
the results obtained by performing NML on the entire training set.
Random stands for the result obtained by employing randomly se-
lected training samples as the dictionary. Recognition performances
of all approaches are illustrated in Fig. 3. We can see that among
three, i.e., Fig. 3(a), 3(b) and 3(d), out of the four evaluation sce-
narios, LP-KSVD outperforms other methods in recognition rate.
For example, as shown in Fig. 3(a), LP-KSVD achieves the high-
est recognition rate 95.7% and leads K-SVD and All Train in the
second place by 1.2%. In Fig. 3(c), different DL algorithms dis-
play diverse performances and LP-KSVD yields the same highest
accuracy 96.7% as that of All Train. However, considering the fact
that the compression rate ( ♯atoms

♯training samples ) for CMU PIE Database is
only 6.2%, the significant saving in computation complexity makes
LP-KSVD a very competitive approach. Note that in Fig. 3(b) and
3(d), all methods achieve similar accuracies. This is due to the fact
that PCA seeks the optimal projection directions that best preserve
the data variance and is insensitive to the nonlinear structure of a
manifold. We also evaluate the efficiency of LP-KSVD and compare
it with other methods. The training time for all methods include
the computation time of both dictionary learning (DL) and training
data embedding (TrDE). From Table 1, we can see that over large-
scale databases (e.g., CMU PIE), the efficiency of LP-KSVD is up
to 149.3 times higher than that of All Train, which further validates
the usability of the proposed method.

5. CONCLUSION AND FUTURE WORK

We propose a novel LP-KSVD algorithm to learn dictionary atoms
as landmark points, which can preserve the locality on nonlinear
manifold. Experimental results validate that the proposed method
is superior to existing DL algorithms in terms of greatly reducing
computational complexity while yielding higher classification rate.
Future work includes refining the local reconstruction coding strat-
egy by incorporating local sparse coding. In addition, LP-KSVD
should be further evaluated over more datasets.
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Fig. 3: Classification results over two face databases. Results in (a)
and (c) are obtained via LLE dimensionality reduction; results in
(b) and (d) are obtained via PCA dimensionality reduction. Note:
the parameter k of LLE is set to 60 for both the Extended YaleB
and CMU PIE databases. All Train represents the results based on
performing NML algorithms on the entire training set.

Table 1: Overall execution time (seconds) over two face databases.
For all methods, the overall time is the sum of dictionary learning
time and training data embedding time.

Extended YaleB CMU PIE
Overall Time Speedup Overall Time Speedup

All Train 22.1577 s No 11807.3121 s No
K-SVD [13] 59.4014 s No 848.3236 s 13.9x
MOD [14] 41.8138 s No 611.1109 s 19.3x
LLC [24] 11.6593 s 1.9x 69.2321 s 170.5x
LP-KSVD 10.0008 s 2.2x 79.0830 s 149.3x
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