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ABSTRACT

For large data sets, performing Gaussian process regression is
computationally demanding or even intractable. If data can be
processed sequentially, the recursive regression method pro-
posed in this paper allows incorporating new data with con-
stant computation time. For this purpose two operations are
performed alternating on a fixed set of so-called basis vec-
tors used for estimating the latent function: First, inference
of the latent function at the new inputs. Second, utilization
of the new data for updating the estimate. Numerical simu-
lations show that the proposed approach significantly reduces
the computation time and at the same time provides more ac-
curate estimates compared to existing on-line and/or sparse
Gaussian process regression approaches.

Index Terms— Gaussian processes, recursive processing,
on-line regression, smoothing

1. INTRODUCTION

Gaussian processes (GPs) allow non-parametric learning of a
regression function from noisy data. They can be considered
Gaussian distributions over functions conditioned on the data
[1]. In contrast to classical regression, GPs provide not only
a regression function but also provide uncertainty estimates
(error bars) depending on the noise and variability of the data.

Unfortunately, due to their non-parametric nature, GPs re-
quire computations that scale with O(n3) for training, where
n is the number of data points. In order to reduce the com-
putational load, sparse approximations have been proposed in
the recent years (see for example [2, 3, 4, 5, 6, 7, 8]). Typi-
cally, these approximations operate on a subset of size s of the
training data, which reduces the computation load toO(s2 ·n)
for training. However, most of these approximations assume
that the whole data set is available prior to the training and
thus, training is performed off-line in a batch mode.

Only a few approaches have been proposed that allow
sequential training of GPs for data that arrives on-line, e.g.,
from a time series. In [9] for instance, clusters on the incom-
ing data points are identified and created sequentially. The
assignment of data points to clusters and the number of clus-
ters, however, depend a threshold value that is heavily appli-
cation specific and requires careful tuning. For specific kernel

functions, the approach proposed in [10] allows transforming
GP regression into a Kalman filtering and smoothing problem
that merely scales with O(n). Unfortunately, this approach
so far is only applicable for one-dimensional inputs.

Similar to [10], the approach proposed in this paper con-
siders GP training a Bayesian filtering problem. To allow for
a large number of inputs of arbitrary dimension, the regres-
sion function is represented by means of a finite set of basis
vectors. Training with incoming data, i.e., updating the mean
and covariance estimate featured by the basis vectors, is per-
formed on-line in a recursive fashion. Thus, after updating,
the newly arrived data points can be discarded, while the esti-
mate provided by the basis vectors is sufficient for prediction.

2. PROBLEM STATEMENT

For GP regression, it is assumed that a set of data D =
{(x1, y1), . . . , (xn, yn)} is drawn from the noisy process

yi = g(xi) + ε ,

where xi ∈ Rd are the inputs, yi ∈ R are the observations
or outputs, and ε ∼ N (0, σ2) is zero-mean Gaussian noise
with variance σ2. For brevity reasons, XD =

[
x1, . . . , xn

]
are all inputs and y = [y1, . . . , yn]

T are the corresponding
observations in the following.

A GP is used to infer the latent function g(.) from the
data D. The GP is completely defined by a mean func-
tion m(x) , E{g(x)}, which specifies the expected out-
put value, and a positive semi-definite covariance function
k(x, x′) , cov{g(x), g(x′)}, which specifies the covariance
between pairs of inputs and is often called a kernel. Typi-
cal examples are the zero mean function m(x) = 0 and the
squared exponential (SE) kernel

k(x, x′) = α2 · exp
(
− 1

2 (x− x
′)TΛ−1(x− x′)

)
. (1)

It is worth mentioning that the approach proposed in this pa-
per holds for arbitrary mean and covariance functions. In (1),
Λ is a diagonal matrix of the characteristic length-scales for
each input dimension and α2 is the variance of the latent func-
tion g. Such parameters of the mean and covariance functions
together with the noise variance σ2 are called the hyperpa-
rameters of the GP. In this paper, it is assumed that the hyper-
parameters are given and thus, are not learned from data.
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As a GP forms a Gaussian distribution over functions, we
can write g(x) ∼ GP (m(x), k(x, x′)). For any finite set of
inputs, the resulting distribution of the outputs is a multivari-
ate Gaussian. For example, the distribution of the function
value g∗ = g(x∗) for an arbitrary test input x∗ is a univariate
Gaussian with mean and variance

µg(x∗) = E{g∗} = m∗ + kT∗K−1x (y −m) , (2)

σ2
g(x∗) = var{g∗} = k∗∗ − kT∗K−1x k∗ , (3)

respectively. Here, var{.} is the variance, Kx , K + σ2I ,
m∗ , m(x∗), m , m(XD), k∗ , k(XD, x∗), k∗∗ ,
k(x∗, x∗), and K , k(XD,XD) is the kernel matrix.

For GP prediction, i.e., for calculating the distribution for
a given set of test inputs according to (2) and (3), it is nec-
essary to calculate the kernel matrix K, to invert the matrix
Kx, and to multiply Kx with k∗. Both the kernel matrix cal-
culation and the multiplication scale with O(n2), while the
inversion even scales with O(n3). Thus, for large data sets
D, storing the kernel matrix and solving all calculations is
prohibitive. The following recursive GP regression approach
aims at performing all calculations computationally very effi-
cient on a set of s� n so-called basis vectors.

Let X ,
[
x1, x2, . . . , xs

]
be the matrix of locations of the

basis vectors and g , g(X) the corresponding (unkown) val-
ues of the latent function. It is assumed that the basis vectors
remain fixed for all processing steps t = 0, 1, . . . Since g(x)
is assumed to be a GP, the distribution p0(g) = N (g;µg

0
,Cg

0)
of g at the initial step t = 0 of the recursive processing
is Gaussian with mean µg

0
, m(X) and covariance Cg

0 ,

k(X,X). At an arbitrary step t > 0, new observations y
t
,

[yt,1, yt,2, . . . , yt,nt ]
T at inputs Xt ,

[
xt,1, xt,2, . . . , xt,nt

]
become available. The goal is now to calculate the posterior
distribution pt

(
g|y

1:t

)
, with y

1:t
= (y

1
, . . . , y

t
), by updating

the prior distribution of g at step t− 1

pt−1 , pt−1
(
g|y

1:t−1

)
= N (g;µg

t−1,C
g
t−1) (4)

with the new observations y
t
.

3. RECURSIVE PROCESSING

One might think of exploiting (2) and (3) for incorporating
the new observations. This however, is not suitable for re-
cursive processing for mainly two reasons. Firstly, the latest
estimate of the latent function in terms of the distribution pt−1
or the mean µg

t−1 and covariance Cg
t−1 is not utilized. Sec-

ondly, no correlation or cross-covariance between X and Xt

is provided, which however is of paramount importance for
updating pt−1. Instead, for deriving a recursive algorithm,
the desired posterior distribution is expanded according to

pt = ct

∫
pt
(
y
t
|g, g

t

)
· pt−1

(
g, g

t
|y

1:t−1

)︸ ︷︷ ︸
= pt

(
g,g

t
|y

1:t

) dg
t

(5)

by applying Bayes’ law and by integrating out g
t
, g(Xt)

from the joint distribution pt
(
g, g

t
|y

1:t

)
. Here, ct is a nor-

malization constant. Based on (5), calculating the posterior
distribution can be performed in two steps: I. Inference, i.e.,
calculating the joint prior pt−1

(
g, g

t
|y

1:t−1

)
given the prior

pt−1 in (4). II. Update, i.e., updating the joint prior with the
observations y

t
and integrating out g

t
.

3.1. Inference

In order to determine the joint prior pt−1
(
g, g

t
|y

1:t−1

)
, it is

important to emphasize that the joint distribution p
(
g, g

t

)
is

Gaussian with mean and covariance

µ =

[
m(X)
m(Xt)

]
and C =

[
k(X,X) k(X,Xt)
k(Xt,X) k(Xt,Xt)

]
, (6)

respectively. This follows from the fact that g(.) is a GP and
any finite representation of this GP yields a Gaussian distri-
bution. Thus, the joint prior can be written as

pt−1
(
g, g

t
|y

1:t−1

)
≈ p(g

t
|g) · pt−1 (7)

= N
(
g
t
;µp

t
,B
)
· N
(
g;µg

t−1,C
g
t−1
)
,

with µp
t
= m(Xt) + Jt ·

(
µg
t−1 −m(X)

)
,

B = k(Xt,Xt)− Jt · k(X,Xt) ,

Jt = k(Xt,X) · k(X,X)−1 .

The first equality in (7) follows from assuming that g
t

is
conditionally independent of the past observations y

1:t−1
given g . Hence, the conditional distribution p(g

t
|g) is Gaus-

sian and results from the joint distribution p
(
g, g

t

)
in (6) by

conditioning on g (see for example Chapter 2.6 in [11]).
After some algebraic transformations, where some basic

properties of Gaussian distributions and the Woodbury for-
mula is utilized, the product in (7) yields the joint Gaussian
pt−1

(
g, g

t
|y

1:t−1

)
of g and g

t
with mean and covariance

q =

[
µg
t−1
µp
t

]
and Q =

[
Cg

t−1 Cg
t−1J

T
t

JtC
g
t−1 Cp

t

]
,

with covariance Cp
t , B + JtC

g
t−1J

T
t .

3.2. Update

Given the result of the previous section that the joint prior
in (7) is a Gaussian N (q,Q), the next step is to perform the
update and marginalization in (5). For this purpose, (5) is
rearranged to

(8)

= pt−1

(
g,g

t
|y

1:t−1

)︷ ︸︸ ︷
pt=

∫
ct · pt

(
y
t
|g

t

)
· pt−1

(
g
t
|y

1:t−1

)
︸ ︷︷ ︸

= pt(g
t
|y

1:t
) (Kalman filter)

· pt−1
(
g|g

t
, y

1:t−1

)
dg

t

under consideration that g is not observed and thus, pt(yt|gt)
is independent of g . Since pt(yt|gt) = N (y

t
; g

t
, σ2I) and
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pt−1(gt|y1:t−1) = N (g
t
;µp

t
,Cp

t ) are both Gaussian, g
t

can
be updated easily via a Kalman filter update step. Updating g
and integrating out g

t
is then performed simultaneously.

Applying the well-known Kalman filter update equations
yields pt(gt|y1:t) = N (g

t
;µe

t
,Ce

t ) with mean and covariance

µe
t
= µp

t
+ Gt ·

(
y
t
− µp

t

)
, (9)

Ce
t = Cp

t −GtC
p
t , (10)

respectively, where Gt = Cp
t ·
(
Cp

t + σ2I
)−1

is the Kalman
gain. The multiplication of the two Gaussians pt(gt|y1:t) and
pt−1

(
g|g

t
, y

1:t−1

)
in (8) again results in a joint Gaussian dis-

tribution of g and g
t

with mean and covariance

µ
t
=

[
µg
t
µe
t

]
and Ct =

[
Cg

t LtC
e
t

Ce
tL

T
t Ce

t

]
respectively, where Lt = Cg

t−1J
T
t (Cp

t )
−1 and

µg
t
= µg

t−1 + Lt ·
(
µe
t
− µp

t

)
, (11)

Cg
t = Cg

t−1 + Lt · (Ce
t −Cp

t ) · LT
t . (12)

However, since we are merely interested in obtaining the dis-
tribution pt = N (g;µg

t
,Cg

t ), i.e., updating the latent function
at the basis vectors X in order to keep the memory and com-
putational complexity bounded over time, g

t
is integrated out.

This corresponds to neglecting the mean µe
t

and covariance
Ce

t of g
t

as well as the cross-covariance LtC
e
t .

3.3. Summary

Putting all together, at steps t = 1, 2, . . . the proposed ap-
proach recursively processes observations y

t
at the inputs Xt

by means of the following set of equations:

In
fe

re
nc

e Jt = k(Xt,X) · k(X,X)−1 , (13)

µp
t
= m(Xt) + Jt ·

(
µg
t−1 −m(X)

)
,

Cp
t = k(Xt,Xt) + Jt ·

(
Cg

t−1 − k(X,X)
)
· JT

t ,

U
pd

at
e G̃t = Cg

t−1J
T
t ·
(
Cp

t + σ2I
)−1

, (14)

µg
t
= µg

t−1 + G̃t ·
(
y
t
− µp

t

)
, (15)

Cg
t = Cg

t−1 − G̃tJtC
g
t−1 . (16)

This recursion commences from the initial mean µg
0
, m(X)

and covariance Cg
0 , k(X,X) of g . The updated mean

(15) and covariance (16) result from substituting µe
t

in (11)
with (9) and Ce

t in (12) with (10), respectively, where G̃t =
Lt ·Gt .

4. DISCUSSION

A close inspection of the inference step shows that it has
the same structure as the backward pass of the Rauch-Tung-
Striebel (RTS) smoother [12]. In contrast to classical RTS

smoothing, the inference step operates in the input domain
and not in the time domain. It predicts the function value
g(x∗) at any (test) input x∗ given all information acquired so
far and thus, is dual to the prediction (2), (3) of a classical GP.

So far, it was assumed that the set of basis vectors is fixed.
The inference step, however, can also be utilized for introduc-
ing new basis vectors. This might be of interest in locations
where the current estimate of the latent function is inaccurate.
By replacing Xt with

[
X,X′

]
, the inference step provides the

initial mean and covariance as well as the cross-covariance
between the new basis vectors and the old ones.

The computations of the inference step scale with O(s2 ·
nt) due to calculating Jt in (13), where nt is the number of
observations at step t. Here, the inversion of the kernel ma-
trix k(X,X) is computationally unproblematic, as it has to
be calculated only once at step t = 0 . Once the gain ma-
trix Jt is calculated, predictions for a single test input are in
O(s) (mean) and O(s2) (covariance). Assuming that all ob-
servations are processed at once, predictions of the recursive
GP are as complex as predictions of sparse GP approaches
relying on a representation comparable to the basis vectors,
e.g., pseudo-inputs in [4] or subset of regressors in [6]. In
this case, the complexity is in O(s2 · n) for initialization as
well as O(s) (mean) and O(s2) (covariance) for predictions,
respectively. In contrast to most sparse GP approaches, the
proposed method can process new observations on-line.

The update step scales with O(nt · s2), where the com-
plexity results from matrix multiplications for which more ef-
ficient algorithms exist, e.g., Strassen’s algorithm [13]. The
inversion in (14) again is not critical as the affected matrix is
of size nt × nt, where typically nt � s .

5. SIMULATION EXAMPLES

The proposed approach is compared to existing on-line and/or
sparse GP approaches: a full GP (named FGP in the follow-
ing), the on-line approaches local GP ([9], LGP) and sparse
on-line GP ([14], SOGP), as well as the sparse (but off-line)
approaches Bayesian committee machine ([5], BCM), subset
of regressors ([6], SRM), and sparse GP using pseudo-inputs
([4], SGP). Further, our approach is applied in three differ-
ent modes: updating/training the basis vectors with every ob-
servation (RGP1), with a batch of 10 successive observations
(RGP10), or with a batch of all observations (RGPall). In the
latter case, RGP becomes an off-line algorithm. For train-
ing the on-line algorithms (LGP, SOGP, RGP1, and RGP10),
the training data is presented sequentially, while for the re-
maining off-line algorithms, the training data is processed in a
batch. All GP methods are implemented in MATLAB, where
the GPML toolbox [15] is utilized for FGP and SGP.

At first, the one-dimensional nonlinear function

y = x
2 + 25·x

1+x2 · cos(x) + ε , ε ∼ N (0, 0.1)
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Fig. 1. Results: first column = first example and second col-
umn = second example. (a) Average runtime for different
number of observations n and sparse elements s = 40. (b),
(c) Average nll for s = 20 and s = 40, respectively. The av-
erage nll values are increased by one in order to have positive
values and allow for a log-scale plot. In (b), SRM and BCM
have average values higher than four and thus, are not shown.
In (c), SRM is not depicted as its average values are signifi-
cantly larger than 10. (d) Average runtime for s = 100. (e),
(f) Average nll for s = 25 and s = 100, respectively.

is considered as an example. It is similar to the growth
model proposed in [16]. To train the GPs, the inputs xi,
i = 1, . . . , n with n ∈ {50, 100, 150, 200}, are sampled uni-
form at random from the interval [−10, 10]. For testing, 200
input-observation pairs are considered. All GPs except of
FGP use some sparse representation consisting of s elements
(basis vectors, pseudo-inputs, clusters, etc.), where s = 20
and s = 40 are considered. In case of the RGPs, the basis
vectors are placed equidistant on the interval [−10, 10].

In the second example, the satellite observations of the
Global Monitoring for Environment and Security program
(GMES)1 are considered. The inputs are the two-dimensional
measurement locations and the observations are the partic-

1http://www.gmes.info/ - Data accessible via ftp://data-portal.ecmwf.int/

ulate matter (PM10) measurements at these locations. The
data set comprises 10,000 elements and was recorded at 10th

of October 2011. For training, n ∈ {500, 1,000, 1,500,
2,000} elements and for testing 1,000 elements are selected
randomly from the data set. For the sparse representations
both s = 25 and s = 100 elements are considered. The basis
vectors of the recursive GPs are placed on a regular grid.

For both examples, a zero mean function and the SE ker-
nel (1) are used. All GP methods use the same hyperparam-
eters. For comparison, two performance criteria are consid-
ered: the total runtime in seconds comprising training and
testing. Further, the negative log-likelihood (nll) of the pre-
dicted observations at the test inputs. For both a lower value
indicates a better performance, where the nll penalizes un-
certainty and inconsistency (prediction error). The averaged
results of 100 simulation runs are depicted in Figure 1.

Among all on-line GP methods RGP1 and RGP10 are the
fastest and the most accurate. However, RGP1 has a signifi-
cantly higher runtime as RGP10 due to some overhead when
performing inference and update for every single observation.

While BCM cannot compete with RGP regarding runtime
and nll, SRM is faster but has a by far higher prediction error
and provides too low variance values, i.e., SRM is inaccu-
rate and at the time too confident about its predictions. SGP
is slightly less accurate than RGP, but its runtime is much
lower. The proposed RGP however, is an on-line method that
processes all observations only once. Operating SGP in an
on-line fashion would require to revisit all observations ac-
quired so far for each new input in order to provide updated
pseudo-inputs. This of course would lead to a much higher
computation time compared to RGP. Here, RGP clearly bene-
fits from its recursive structure, which is not present for SGP.

For few observations, RGP is slower than FGP due to the
overhead of managing and updating the basis vectors. How-
ever, RGP benefits from a large data set as considered in the
second example. Here, RGPall has a lower runtime com-
pared to FGP since the prediction is less costly. Furthermore,
RGP10 also becomes faster from 1,500 observations on. The
same behavior is expected for RGP1 for training data sets with
more than 8,000 observations. If the number of basis vectors
is sufficiently high, RGP can even have lower nll values com-
pared to FGP. While the rmse between prediction and true
values is similar for RGP and FGP, RGP provides much lower
prediction variances without being over-confident.

6. CONCLUSIONS

The novel on-line Gaussian process regression approach pro-
posed in this paper relies on a set of basis vectors that is up-
dated recursively with new observations. The number of basis
vectors and thus, the computation time for updating or predic-
tion remains constant. Compared to existing on-line GP ap-
proaches, the proposed one is computationally more efficient
and provides a higher prediction accuracy.
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