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ABSTRACT

Bayesian network classifiers are probabilistic classifiers achieving
good classification rates in various applications. These classifiers
consist of a directed acyclic graph and a set of conditional proba-
bility densities, which in case of discrete-valued nodes can be repre-
sented by conditional probability tables. In this paper, we investigate
the effect of quantizing these conditional probabilities. We derive
worst-case and best-case bounds on the classification rate using in-
terval arithmetic. Furthermore, we determine performance bounds
that hold with a user specified confidence using quantization theory.
Our results emphasize that only small bit-widths are necessary to
achieve good classification rates.

Index Terms— Bayesian network classifiers, custom precision
analysis, quantization effects, discriminative parameter learning

1. INTRODUCTION

Bayesian network classifiers (BNCs) are probabilistic classifiers,
represented by a directed acyclic graph (DAG) and a set of condi-
tional probability densities (CPDs). For determining these CPDs
two paradigms exist, namely generative parameter learning and
discriminative parameter learning. Generative parameter learning
aims at identifying CPDs that model the data generation process.
In contrast, discriminative parameter learning aims at identifying
CPDs such that good classification rates are achieved. BNCs with
discriminatively optimized CPDs achieve classification rates compa-
rable to support vector machines (SVMs) in several applications [1].
While SVMs are purely discriminative models, BNCs often show
good generative properties even when their parameters were trained
discriminatively. Hence BNCs can naturally deal with scenarios
such as handling missing features and semi-supervised learning. In
contrast, SVMs require imputation techniques in this case.

In discrete-valued domains, the CPDs of BNCs can be specified
by conditional probability tables (CPTs). This results in compact
models, often requiring far less parameters than SVMs with compa-
rable classification performance [1]. Assuming complete data, clas-
sification using BNCs requires evaluation of a product of conditional
probabilities, or equivalently, a sum of log conditional probabilities,
followed by the evaluation of a maximum operator. In contrast, in
SVMs using Gaussian kernels, classification involves computing Eu-
clidean distances and evaluating exponential functions. This sug-
gests, that the classification process of BNCs is easier to implement
in hardware than implementing the classification process of SVMs.
Following this thread, we aim at investigating properties of BNCs
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Fig. 1. Generalization error of a BNC for MNIST data using re-
duced precision parameters (solid line), and generalization error us-
ing double-precision floating point parameters (dashed line).

relevant to implementation on low-complexity platforms, e.g. em-
bedded systems.

Various authors have already observed that the generalization
error of BNCs is not sensitive with respect to the precision used for
representing the entries of the conditional probability tables [2, 3].
For example, consider Fig. 1, which shows the generalization error
of a BNC with naive Bayes (NB) structure and maximum likelihood
parameters for MNIST data [4]. The number of bits used for rep-
resenting the log parameters in a fixed-point format and performing
the computations during classification is shown on the x-axis. Up to
10 bits are used for the integer part and up to 10 bits for the fractional
part. When using only 9 bits in total, performance is close to opti-
mal, i.e. the generalization error is as small as for double-precision
floating point parameters.

In this paper, we study the effect of quantizing the entries of the
CPTs of BNCs in more detail. Quantization is performed in the log
domain using fixed-point numbers. This fixed-point representation is
sufficient for accurate classification [5]. We are interested in worst-
case estimates for the classification performance when quantizing
the parameters. Additionally, we provide a statistical analysis of the
generalization error observed after quantization.

This paper is organized as follows: In Section 2, we introduce
our notation, Bayesian network classifiers and methods for parame-
ter learning. In Section 3, we derive performance bounds for BNCs
with reduced precision parameters and propose a method for esti-
mating the expected classification rate. These results are illustrated
by experiments in Section 4. We relate our work to prior results in
Section 5. In Section 6, conclusions and an outlook are provided.
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2. BACKGROUND

2.1. Probabilistic Classification

In probabilistic classification one assumes a random variable (RV) C
denoting the class and RVs X1, . . . , XL representing the attributes
of the classifier. These RVs are modeled by a joint probability distri-
bution P∗(C,X), where X = [X1, . . . , XL] is a random vector con-
sisting of X1, . . . , XL. Typically, P∗(C,X) is unknown. However,
a training set D consisting of N samples drawn i.i.d. from P∗(C,X)

is available, i.e. D = {(c(n),x(n))|n = 1, . . . , N}, where c(n) de-
notes the instantiation of C and x(n) the instantiation of X in the
nth training sample. The aim is to induce good classifiers provided a
training set. Formally, a classifier h : sp(X) → sp(C) is a mapping,
where sp(X) denotes the set of all assignments of X and sp(C) is
the set of classes. The generalization error of this classifier is

Err(h) := EP∗(C,X) [1{C 6= h(X)}] , (1)

where 1{A} denotes the indicator function and EP∗(C,X) [·] is the
expectation operator with respect to the distribution P∗(C,X). The
indicator function 1{A} equals one if statement A is true and zero
otherwise. Typically, the generalization error can not be evaluated
but is estimated using cross-validation [6].

Any probability distribution P(C,X) naturally induces a classi-
fier hP(C,X), given as

hP(C,X) : sp(X) → sp(C), (2)
x 7→ argmax

c∈C
P(C = c|X = x).

In this way, each instantiation x of X is classified as the maximum
a-posteriori (MAP) estimate of C given x under P(C,X).

2.2. Learning Bayesian Network Classifiers

Bayesian Networks (BNs) [7, 8] are used to represent joint prob-
ability distributions in a compact and intuitive way. A BN B =
(G,PG) consists of a directed acyclic graph G = (V,E), where
V = {X0, . . . , XL} is the set of nodes and E the set of edges
of the graph, and a set of local conditional probability distribu-
tions PG = {P(X0|Pa(X0)), . . . , P(XL|Pa(XL))}. The terms
Pa(X0), . . . , Pa(XL) denote the set of parents of X0, . . . , XL

in G, respectively. We abbreviate the conditional probability
P (Xi = j|Pa(Xi) = h) as θij|h and the corresponding logarithmic
probability as wi

j|h := log(θij|h). Each node of the graph corre-
sponds to an RV and the edges of the graph determine dependencies
between these RVs. Throughout this paper, we denote X0 as C, i.e.
X0 represents the class, and assume that C has no parents in G, i.e.
Pa(C) = ∅. A BN induces a joint probability PB(C,X1, . . . , XL)
by multiplying the local conditional distributions together, i.e.

PB(C,X1, . . . , XL) = P(C)

L∏
i=1

P(Xi|Pa(Xi)). (3)

BNs for classification [9] can be optimized in two ways: firstly,
one can select the graph structure G, and secondly, one can learn
the conditional probabilities PG . Selecting the graph structure is
known as structure learning and selecting PG is known as parameter
learning. Throughout this paper, we consider NB structures only.

For learning the parameters PG of a BN two paradigms exist,
namely generative parameter learning and discriminative parameter
learning [1]: In generative parameter learning one aims at identify-
ing parameters representing the generative process that results in the

data of the training set. An example of this paradigm is maximum
likelihood (ML) learning. Its objective is maximization of the like-
lihood of the data given the parameters. Formally, ML parameters
PML

G are learned as

PML
G = argmax

PG

N∏
n=1

PB(c(n),x(n)), (4)

where PB(C,X) is the joint distribution in (3) induced by the BN
(G,PG).

In discriminative learning one aims at identifying parameters
leading to good classification performance on new samples drawn
from P∗(C,X). Several objectives for this purpose are known in the
literature, e.g. the maximum conditional likelihood (MCL) [10] ob-
jective and the maximum margin (MM) [11, 1] objective. Through-
out this paper, we consider the MM objective as a representative for
discriminative parameter learning.

MM parameters PMM
G are found as

PMM
G = argmax

PG

N∏
n=1

min
(
γ, d(n)

)
, (5)

where min(γ, d(n)) denotes the hinge loss and d(n) is the margin of
the nth sample given as

d(n) =
PB(c(n),x(n))

maxc6=c(n) PB(c,x(n))
, (6)

and γ > 1 is a parameter controlling the margin. In this way, the
margin measures the likelihood of the nth sample belonging to the
correct class c(n) in relation to the strongest competing class. The
nth sample is correctly classified if d(n) > 1 and vice versa.

3. BOUNDS

In this section, we determine worst-case and best-case bounds on the
classification rate achieved by BNCs with reduced precision param-
eters. In Section 3.1 we shortly review classification in BNCs and
introduce the used quantization, in Section 3.2, we derive a worst-
case bound using interval arithmetic, and in Section 3.3, we derive
probabilistic bounds using quantization theory.

3.1. Classification Revisited and Quantization

In BNCs B = (G,PG), an unlabeled sample x is classified according
to (2), i.e. it is classified to the class with highest posterior probabil-
ity given x. This classification can equivalently be performed in the
logarithmic domain, i.e. x is assigned to class c∗ such that

c∗ = argmax
c

log PB(c|x) (7)

= argmax
c

log PB(c,x).

Because of the factorization properties of BNs stated in (3), the equa-
tion above can be rewritten as

c∗ = argmax
c

[
log P(c) +

L∑
i=1

log P(xi|xPa(Xi))

]
, (8)

where xPa(Xi) denotes the instantiation of the parents of Xi

according to x. In the following, we consider quantization of
the terms log P(c) and P(xi|xPa(Xi)), i.e. the log probabilities
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wi
j|h = log(θij|h). Given a fixed number of integer bits bi ∈ N0

and fractional bits bf ∈ N0, we denote ŵi
j|h := Q(wi

j|h),
where Q(·) = Qbi

bf
(·) is the quantization operator. The quan-

tizer Qbi
bf
(·) : R− → Bbi

bf
performs quantization by rounding [12],

where Bbi
bf

:= {−
∑bi−1

k=−bf
bk2

k : bk ∈ {0, 1}} is the set of all
negative fixed point numbers with bi integer bits and bf fractional
bits.

3.2. Deterministic Case: Worst-Case and Best-Case Bounds

Consider the BNC B = (G,PG) with log parameters wi
j|h. Denote

by BQ the BNC with parameters ŵi
j|h = Q(wi

j|h). Note that these
quantized log parameters are not properly normalized in general, i.e.∑

j exp(ŵ
i
j|h) 6= 1. For ease of analysis we ignore this fact. We

want to bound the generalization error of BQ in terms of the gen-
eralization error of B. Therefore, note that the largest error due to
quantization is ∆ := 2−bf−1, i.e. |Q(α) − α| ≤ ∆ for all possible
α ∈ R− (we ignore cases in which α is larger than the largest value
representable by the chosen number format). The generalization er-
ror Err(h

PBQ (C,X)
) can be worst-case bounded as

Err(h
PBQ (C,X)

) = (9)

= EP∗(C,X)

[
1{C 6= h

PBQ (C,X)
(X)}

]
,

=
∑
c,x

P∗(c,x)1{log PBQ(c,x) < max
c′ 6=c

log PBQ(c′,x)}

≤
∑
c,x

P∗(c,x)1{log PB(c,x) < max
c′ 6=c

(log PB(c′,x) + 2(L+ 1)∆)},

where the inequality follows because

log PBQ(c,x) = ŵc +

L∑
i=1

ŵi
j|h (10)

≥ wc −∆+

L∑
i=1

(wi
j|h −∆)

= log PB(c,x)− (L+ 1)∆

and similarly log PBQ(c′,x) ≤ log PB(c′,x) + (L + 1)∆. In gen-
eral, this worst-case bound can not be achieved because the quantiza-
tion error introduced on a specific log probability favors the correct
classification of some samples while degrading that of others. Note
that this bound depends on the margin (6) of the samples, i.e. in case
of a large sample margin even coarse quantization may not change
the classification of certain samples, while samples with a small mar-
gin are prone to misclassification under quantization errors.

Similarly, a best-case bound can be determined. It reads as

Err(h
PBQ (C,X)

) (11)

≥
∑
c,x

P∗(c,x)1{log PB(c,x) < max
c′ 6=c

(log PB(c′,x)− 2(L+ 1)∆)}.

Any classifier after parameter quantization must not perform better
than this bound.

Note that evaluating the bounds does not require to actually
quantize the parameters, as the bounds are obtained by evaluating
PB(C,X).

3.3. Stochastic Case: Probabilistic Performance Bounds

In the last section we determined performance bounds for BNCs with
reduced precision parameters BQ. Now, we aim at employing results
from quantization theory to obtain tighter bounds on the classifica-
tion performance holding with a user specified probability.

Assume that we estimate the parameters of the BN B from train-
ing set D using ML. That is, the parameters are the outcome of
a random experiment, i.e. the samples in D are drawn i.i.d. from
P∗(C,X). Consequently, if we were provided another training set
D′ and estimated the parameters of another BN B′, then in general
PB(C,X) 6= PB′

(C,X). The estimated parameters vary around the
true (optimal) parameters. The more samples are provided, the more
accurate the estimated parameters are, i.e. the variance of the pa-
rameter estimators reduces. Hence, ML parameters are distributed
around the optimal ML parameters. For simplicity, we assume that
the estimate of the parameters of B is uniformly distributed in the
quantization interval. However, if plenty of training data is available,
the parameter estimates are accurate and will not span the quantiza-
tion interval.

The quantized log probabilities ŵi
j|h can be written as ŵi

j|h =

wi
j|h + eij|h, where eij|h is the quantization error uniformly dis-

tributed in [−∆,∆]. The expected value of this error is zero and its
variance is 2−2bf /12, cf. [12]. The joint probability log PBQ(c,x)
can now be written as

log PBQ(c,x) = ŵc +

L∑
i=1

ŵi
j|h (12)

= wc + ec +

L∑
i=1

(wi
j|h + eij|h)

= log PB(c,x) + E(c,x),

where E(c,x) := ec +
∑L

i=1 e
i
j|h. The term E(c,x) is the sum

of (L + 1) uniformly distributed RVs. Hence, it is distributed ac-
cording to the mean-centered Irwin-Hall distribution [13]. If (L +
1) is sufficiently large, this distribution can be approximated accu-
rately by a truncated normal distribution with zero mean, variance
(L+1)2−2bf /12 and minimum/maximum value of −(L+1)∆ and
(L+ 1)∆, respectively.

Employing the cumulative distribution function (CDF) FE(c,x)(·)
of E(c,x), we can determine with a certain confidence level p the
largest value of E(c,x). For example, with a confidence of 100%
the term E(c,x) is smaller than (L + 1)∆. We can compute
similar bounds Bp on the value of E(c,x) with other confidences
like 90%, 80%, . . .. The values of Bp can be used in conjunction
with (9) yielding probabilistic worst-case bounds of the form

Err(h
PBQ (C,X)

) = (13)

≤
∑
c,x

P∗(c,x)1{log PB(c,x) < max
c′ 6=c

(log PB(c′,x) + 2Bp)}.

The bound with confidence p = 100% corresponds to the worst-
case bound, i.e. Bp = (L + 1)∆, and the bound with confidence
p = 0% corresponds to the best-case bound, i.e. Bp = −(L+ 1)∆.
For p = 50%, the bound Bp = 0, i.e. the generalization error of BQ

equals that of B with a confidence of 50 percent.

4. EXPERIMENTS

We present classification results for MNIST [4] and TIMIT data [14]
using BNCs with reduced precision parameters and NB structure.
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(a) MNIST data, ML parameters
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(b) MNIST data, MM parameters

0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

number of fractional bits

er
ro

r

1 2 3 4 5 6 7 8 9 1010101010101010101010

number of integer bits

(c) TIMIT data, ML parameters
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(d) TIMIT data, MM parameters

Fig. 2. Generalization error of BNCs with NB structure and double-precision parameters (dashed green line), reduced precision parameters
(solid blue line), worst-case and best-case bounds (red lines), and 90%, . . . , 10% confidence bounds (gray lines, from top to bottom).

The first dataset deals with handwritten digit recognition and the
second with phonetic classification. Details about the data are not
relevant here but provided in [1].

The experiments are performed as follows: In a first step, we
learn BNCs with ML and MM parameters for each dataset using
double-precision floating point numbers. Then, we quantize the de-
termined log parameters using fixed-point numbers with varying pre-
cision, i.e. we quantize the previously determined CPTs. We select
different values for the number of integer bits bi and the number of
fractional bits bf , and evaluate the classification performance of the
resulting BNCs on a separate test set. First, bi is increased up to ten
10 bits1, then bf is increased up to 10 bits. All computations, i.e. the
classification process, is performed using the same precision. Ad-
dition of the log probabilities is performed using saturation. When-
ever bi = 10, we also compute the stochastic bounds derived in the
last section. Results for MNIST and TIMIT data using BNCs with
NB structure and ML parameters are shown in Figures 2(a) and 2(c),
and for BNCs with NB structure and MM parameters in Figures 2(b)
and 2(d).

We observe that for MNIST data, 8 integer bits are required to
achieve classification performance close to optimal. Additional inte-
ger bits do not increase the classification performance. When using
less than 7 integer bits, classification performance degrades severely,
even though the integer part of every log parameter of the classifier
can be represented exactly. This is because of the saturation occur-
ring when adding up the log probabilities. The bounds tighten with
an increasing number of fractional bits and are almost tight for 3 or
more fractional bits. Similar observations can be made for TIMIT.

1Generally we fix bi to a maximum of 10 bits. This number could be
reduced while still observing similar classification performance.

5. RELATION TO PRIOR WORK

In [3], the effect of parameter quantization in BNCs with focus on
comparing the robustness of BNCs with generatively and discrimi-
natively optimized parameters is investigated. The authors use bit-
width reduced floating point parameters. Furthermore, in [5] CR
performance with respect to reduced fixed point precision parame-
ters has been analyzed.

Indirectly related work deals with (a) sensitivity analysis of
Bayesian networks [15, 16], stating essentially that classification
using BNCs is insensitive to parameter deviations whenever either
these parameters are not close to zero or one, or the class posteriors
are significantly different, (b) credal networks, i.e. generalizations
of BNs that associate a whole set of CPDs with every node in the
DAG [17], allowing for robust classification and incorporating that
CPDs can often not be specified exactly.

6. CONCLUSIONS AND FUTURE WORK

We investigated quantization effects in BNCs with reduced preci-
sion parameters, i.e. the parameters were represented by fixed-point
numbers of a specified precision. We determined deterministic and
probabilistic performance bounds and evaluated these bounds in ex-
periments. The bounds allow to quantify the impact of parameter
quantization on classification performance.

In future work, we aim at deriving more accurate bounds by
making more realistic assumptions. Further, we aim at quantifying
the worst-case decrease of classification rate that can result for BNCs
with reduced precision parameters for specific DAGs without con-
sidering underlying data. Additionally, we want to derive parameter
learning algorithms for reduced-precision fixed-point parameters.
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