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ABSTRACT

In this contribution we derive the Maximum A-Posteriori

(MAP) estimates of the parameters of a Gaussian Mixture

Model (GMM) in the presence of noisy observations. We

assume the distortion to be white Gaussian noise of known

mean and variance. An approximate conjugate prior of the

GMM parameters is derived allowing for a computationally

efficient implementation in a sequential estimation frame-

work. Simulations on artificially generated data demonstrate

the superiority of the proposed method compared to the

Maximum Likelihood technique and to the ordinaryMAP ap-

proach, whose estimates are corrected by the known statistics

of the distortion in a straightforward manner.

Index Terms— Gaussian mixture model, Maximum like-

lihood estimation, Maximum a posteriori estimation

1. INTRODUCTION

Gaussian Mixture Models, i.e., weighted linear combinations

of Gaussians whose weights sum up to unity, are often a much

more realistic model of real-world data than a single Gaus-

sian. They have foundwidespread use in many different fields

such as image processing (clustering-based image segmenta-

tion) and biometric systems (speaker-independent automatic

speech recognition).

The Maximum Likelihood (ML) estimates of the param-

eters of the GMM, i.e., of weights, means and variances of

the component densities, can be derived by the Expectation

Maximization (EM) algorithm [1, 2]. This has been extended

to the MAP estimation by employing conjugate a-priori dis-

tributions, see, e.g., [3] for a textbook treatment. The MAP

estimation of GMM parameters has also important applica-

tions, such as the adaptation of an acoustic model of a speech

recognizer to the statistics of a target speaker [4].

In many applications, however, the GMM process is not

directly observable, but is superposed by additive noise. The

problem occurs, for example, in speaker recognition or MAP-

based speaker adaptation if the input data are corrupted by

noise. In these applications noise estimation algorithms, such

The work was in part supported by Deutsche Forschungsgemeinschaft

under contract no. Ha3455/8-1.

as the minimum statistics method [5], are able to provide es-

timates of the statistics of the corrupting noise process. But

even if the noise statistics are known, it is unclear how to ob-

tain the MAP estimates of the GMM parameters.

In an earlier work we have shown how MAP estimates of

a single Gaussian can be obtained from noisy observations:

the posterior was approximated by a probability density func-

tion (PDF) from the same family as the prior to allow for an

efficient realization in a sequential estimation framework [6].

The mode of the approximate posterior was chosen to match

the mode of the exact posterior.

In this work we adopt this idea and extend it to develop

a computationally efficient MAP estimation of the GMM pa-

rameters in the presence of noisy observations. We assume a

block sequential setup, where the GMM parameters and the

noise statistics are taken to be constant for the duration of N
observations. From block to block both the target process and

the noise statistics are allowed to change. Thus the derived

method is able to track the parameters of a non-stationary

GMM process in the presence of time-variant additive noise.

The simulations show that improved mean and variance esti-

mates are obtained compared to standard methods.

The paper is organized as follows. In Section 2 the MAP

estimator is derived. Due to lack of space we concentrate on

those parts which are different from the ordinary MAP esti-

mation in the absence of noise on the observations. In Sec-

tion 3 we present simulation results followed by conclusions

drawn in Section 4.

2. MAP-BASED GMM PARAMETER ESTIMATION

FROM NOISY OBSERVATIONS

We consider a real-valued stationary random process {Xn},
whose realization xn of the n-th random variableXn is drawn

from an univariate GMM xn ∼
∑K

k=1 ωk · N (µk, σ
2
k) with

given model order K for n = 1, . . . , N . Our goal is to es-

timate the weights ωk, means µk and variances σ2
k of the

GMM from noisy observations x̃N1 = {x̃1, . . . , x̃n, . . . , x̃N},
where x̃n = xn + en, given an a-priori model for the in-

volved parameters. The distortion is the realization of a white

Gaussian process with the known mean and variance, i.e.,

en∼N (µE , σ
2
E). Denoting the parameters to be estimated by
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θ={ωk, µk, σ2
k; k=1, . . . ,K}, the MAP estimate is given by

θ̂MAP = argmax
θ

p(θ|x̃N1 ) = argmax
θ

p(x̃N1 |θ) · p(θ). (1)

The MAP estimate is determined with the help of the EM

algorithm using the auxiliary function

Q(θ, θ̂) = E
[

log p(z̃N1 |θ)|x̃N1 , θ̂
]

, (2)

where θ̂ are the parameter estimates of the last iteration. Here,

z̃N1 = [x̃N1 , l
N
1 ] denote the complete data comprising the noisy

observations x̃N1 and the unknown labels lN1 = l1, . . . , lN
with ln ∈ {1, . . . ,K}. After convergence of the EM algo-

rithm the MAP estimate is obtained via the maximization of

L(θ, θ̂) := eQ(θ,θ̂) · p(θ). (3)

For the GMM viewed here the auxiliary function is given by

Q(θ, θ̂) = (4)

K
∑

k=1

N
∑

n=1

P (ln = k|x̃n, θ̂)· ln [P (ln = k|θ)·p(x̃n|ln = k, θ)] ,

which gives, after some manipulations [7],

Q(θ, θ̂) =

K
∑

k=1

N
∑

n=1

αn,k
αn

· ln [ωk · p(x̃n|ln = k, θ)] (5)

with αn,k= ω̂k ·p(x̃n|ln=k, θ̂) and αn=
∑K
k=1αn,k, where

ω̂k=P (ln=k|θ̂) and ωk=P (ln=k|θ).
Using p(x̃n|ln = k, θ) = N (x̃n;µk + µE , σ

2
k + σ2

E) we
arrive at

eQ(θ,θ̂) ∝
K
∏

k=1

ωγkk
(σ2
k + σ2

E)
γk
2

· e
−

γk(x̄k−(µk+µE))2+Sk

2(σ2
k
+σ2

E
) , (6)

with γn,k=
αn,k

αn
, γk=

∑N
n=1γn,k, x̄k=

1
γk

∑N
n=1 γn,k·x̃n

and Sk=
∑N
n=1 γn,k ·(x̃n − x̄k)

2.

To enable an efficient estimation procedure, the a-priori

PDF p(θ) = P (ω) ·
∏K
k=1 p(µk|σ

2
k) ·p(σ

2
k) is chosen to be a

conjugate prior to the likelihood-function for error free obser-

vations x̃n= xn. The weights ωk are modeled by a Dirichlet

distribution P (ω)=
∏K
k=1 ω

ξk,0−1
k , the means µk by a Gaus-

sian distribution p(µk|σ2
k)∝

1
σk

· exp
(

− (µk−mk,0)
2

2σ2
k
/κk,0

)

and the

variances σ2
k by a scaled inverse chi-squared (SICS) distribu-

tion p(σ2
k)∝

(

1
σk

)νk,0+2

· exp
(

−
νk,0λ

2
k,0

2σ2
k

)

with the following

hyperparameters: concentration parameters ξk,0, meansmk,0,

compactness degrees κk,0, degrees of freedom νk,0 and scale

factors λ2k,0. Hence, the a-priori PDF is given by:

p(θ) ∝
K
∏

k=1

ω
ξk,0−1
k

σ
νk,0+3
k

· e
−

κk,0(µk−mk,0)2+νk,0λ2
k,0

2σ2
k . (7)

However, in the case of noisy observations, the term L(θ, θ̂)
in (3) no longer has the same algebraic form as the prior p(θ)
in (7). While an update formula for the concentration param-

eters can be found according to

ξk = ξk,0 + γk, (8)

trying to find an update formula for the hyperparameters of

the Gaussian PDF for µk leads to

κk(σ
2
k) = κk,0 +

σ2
k

σ2
k + σ2

E

· γk, (9)

mk(σ
2
k) = mk,0 +

γk · σ2
k · (x̄k − µE −mk,0)

κk,0 · (σ2
k + σ2

E) + γk · σ2
k

, (10)

which depend on the unknown variance σ2
k. Similar to [6] we

suggest to eliminate this dependence by replacing σ2
k by its

estimate σ̂2
k , obtained from the last EM iteration:

κk := κk(σ̂
2
k); mk := mk(σ̂

2
k). (11)

Estimates of ωk and µk are calculated from the updated hy-

perparameters of (8) and (10) by

ω̂k =
1− ξk

K −
∑K

k=1 ξk
and µ̂k = mk. (12)

Using the approximation (11) and concentrating on the

terms in L(θ, θ̂) that depend on the variance σ2
k leaves

f(σ2
k) =

e
−

κk,0γk(x̄k−µE−mk,0)2

2(σ2
k
(κk,0+γk)+σ2

E
κk,0)

−
Sk

2(σ2
k
+σ2

E
)
−

νk,0λ2
k,0

2σ2
k

(σ2
k + σ2

E)
γk
2 · σ

νk,0+3
k

, (13)

which no longer has the algebraic form of a SICS distribution.

In order to obtain a computationally efficient MAP es-

timation we need to establish a conjugate prior. This is

achieved by approximating f(σ2
k) by a SICS distribution

having the maximum at the same position as f(σ2
k).

In the following we show how the maximum of f(σ2
k) can

be found efficiently. First we note that there is only a single

local maximum in R
+. To see this, consider the function:

g(ψ) = −2 · ln(f(ψ)) = (14)

K2

K3ψ+K4
+

K6

ψ+K0
+
K1

ψ
+K5 · lnψ +K7 · ln(ψ +K0)

with constants K1=νk,0·λ2k,0, K2=κk,0·(x̄k−mk,0−µE)2,

K3 = 1 + κk,0/γk, K4 = κk,0 · σ2
E/γk, K5 = νk,0 + 3,

K6 = Sk, K7 = γk, K0 = σ2
E and ψ = σ2

k > 0. Since
g(ψ) is continuous and a sum of strictly monotonically in-

creasing and strictly monotonically decreasing functions with

limψ→0 g(ψ) = limψ→∞ g(ψ) = ∞, g(ψ) has exactly one

minimum ψk, which is the maximum of f(ψ).
At the same time ψk is the single positive root of the

derivative f ′(ψ) = h(ψ)/(ψ2(K3ψ+K4)
2(ψ+K0)

2) with

h(ψ) = (K3ψ+K4)
2(ψ+K0) · ha(ψ) +ψ2 · hb(ψ), where

ha(ψ) =(K5 +K7)ψ
2 + (K0K5 −K1)ψ −K0K1,

hb(ψ) =−K6(K3ψ +K4)
2 −K2K3(ψ +K0)

2.

3353



Since h(ψ) is a fifth order polynomial, the analytical determi-

nation of ψk is very complicated. We suggest to find it nu-

merically by a combination of the interval bisection and the

Newton method. To determine a start interval [bL, bU ] for the
bisection approach with bL, bU >0, h(bL)<0 and h(bU )>0,
the functionsha(ψ) and hb(ψ) are analyzed. It can be verified
that ha(bL) < 0 for

bL=
K1−K0K5+

√

(K0K5−K1)2+4K0K1(K5+K7)

2(K5+K7)
,

(15)

which can be used as the lower limit bL of the start interval,

since hb(ψ)< 0 for ∀ψ. As an upper limit bU we suggest to

use the global sample variance. After executing a number of

bisection loops, a rough estimate of ψk is calculated, which is
used as a starting value of the Newton approach. The resulting

estimate of the Newton method ψ̂k is taken as the mode of

posterior PDF of the variance: σ̂2
k = ψ̂k.

In a sequential estimation setup, where the posterior esti-

mated on the preceding data block l is taken as the prior for

the next block l+1, the prior PDF of the variance is chosen to

be a SICS with mode σ̂2
k,l found by the procedure described

before. The scale factors of the established conjugate prior for

the variances can then be calculated by λ2k,l+1 =
νk,0+2
νk,0

· σ̂2
k,l.

The mean hyperparameters are set tomk,l+1 = µ̂k,l.
If the target process is stationary, all hyperparameters

should be updated after each block of data, resulting in more

reliable estimates as more data come in. If, however, the

target process xn is non-stationary, an update of all hyper-

parameters would result in an estimator, which is unable to

track the time-variant statistics, due to its increasingly narrow

bandwidth. The importance of the prior relative to the current

data block, and thus the bandwidth of estimator, is controlled

by the values of the hyperparameters ξk,l, κk,l and νk,l. Thus,
they should be kept to constant values chosen according to

the degree of time-variance of the GMM parameters.

3. SIMULATION RESULTS

To verify the proposed estimation method we generated

data samples xM1 = x1, . . . , xM by drawing them from a

GMM of given model order K with constant parameters

ωk, µk and σk, randomly drawn for each simulation under

the constraint of multi-modality of the GMM. To generate

the noisy observations x̃n, we divided the sample sequence

xM1 in L = 1000 blocks of length N = M/L. In the

l-th block for l = 1, . . . , L, realizations en of an additive

noise were generated by draws from a Gaussian PDF with

time-variant mean µE,l = C · sin(4πl/L)/2 and standard

deviation σE,l randomly drawn from a uniform distribution

on [0;C · sin2(2πl/L)]. Thus, the statistics of the distor-

tion is constant within each block and changes from block to

block. The constant C controls the maximum values of µE,l
and σE,l and thus the signal-to-noise ratio. In order to have a

sufficient number of observations for a pureML estimation of

the parameters in each block, which we consider for compari-

son purposes, the number of observations per block was set to

N = 3K · 10. Note that the total number of observationsM
thus depends on the GMM orderK .

The proposed MAP-based approach, denoted by MAPb,

was then applied to obtain estimates ω̂MAPb
k,l , µ̂MAPb

k,l and σ̂MAPb
k,l

for each block l. Despite of the stationary target process we

kept the hyperparameters ξk,l=ξk,0=5, κk,l = κk,0 = 5N
and νk,l = νk,0 = N constant for all data blocks. The start

values of the hyperparameters mk,0 and λ2k,0 were set such

that the corresponding modes of p(θ) are located close to the

true values µk and σ2
k respectively. It should be noted that

the assumption of a good a-priori knowledge was used for all

tested approaches. While the hyperparameter mk,l and λ
2
k,l

are updated from block to block, as mentioned before, they

remain unchanged within iterations of the EM-algorithm on

the same data block. The maximum number of EM iterations

was set to 5 for all tested estimators. The root ψ̂k was calcu-

lated for each EM iteration by executing 10 bisections and a

maximum of 10 iterations of the Newton method.

Furthermore, the ML method and the ordinary MAP ap-

proach from [4] were applied on the same data x̃M1 (both

without consideration of the presence of the distortion) with

resulting estimates ω̂ML
k,l , µ̂

ML
k,l , σ̂

ML
k,l and ω̂MAP

k,l , µ̂MAP
k,l , σ̂MAP

k,l

respectively. Since knowledge of the statistics µE,l and σE,l
is assumed, these estimates can be corrected in a straightfor-

ward manner to obtain estimates, which are denoted as plain

ML (pML) and plain MAP (pMAP) respectively:

ω̂pΩ
k,l = ω̂Ω

k,l, µ̂pΩ
k,l = µ̂Ω

k,l − µE,l, (16)

σ̂pΩ
k,l =

{

√

(σ̂Ω
k,l)

2 − σ2
E,l for σ̂Ω

k,l > σE,l

min(σ̂pΩ
k,l′ ) otherwise

(17)

for l′ = 1, . . . l−1 andΩ = {’ML’, ’MAP’}. The pMAP app-

roach used the same set of hyperparameters as the proposed

MAPb method.

Examples of the performance of the pML, pMAP and

MAPb methods are illustrated in Fig. 1. The trajectory of the

4-th component of the target process, xn,4 ∼ ω4 · N (µ4, σ
2
4),

where ω4 = 0.23, µ4 = 42.8 and σ4 = 3.3, and of the

associated noisy process x̃n,4 = xn,4 + en are depicted in

Fig. 1(a). The estimates µ̂
pML

4,l and σ̂
pML

4,l given in Fig. 1(b)

and in Fig. 1(c) result in a too large variance. Furthermore,

the larger the noise variance σ2
E,l is, the stronger the ML es-

timates scatter. This behavior can also be seen in the pMAP

estimates. While µ̂pMAP

4,l varies only slightly with σ2
E,l, the es-

timates σ̂pMAP

4,l exhibit large variations. The proposed MAPb

method delivers the best trajectories.

To quantitatively evaluate the performance of the estima-

tors we calculated the root-mean-squared error (RMSE) of

the weight, mean and variance estimates denoted by RMSEω ,

RMSEµ and RMSEσ2 respectively, averaged over allK com-

ponent densities. The RMSEµ and RMSEσ2 values of the
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(a) target xn and noisy x̃n processes for k = 4

x
n

x̃
n

20

20

70

70

48 96 144 192 240
×10

3

sample index, n

(b) mean estimation

µ̂
p
M
L

4
,l

µ̂
p
M
A
P

4
,l

µ̂
M
A
P
b

4
,l

41

41

41

43

43

43

45

45

45

45

45

µ4,l

(c) estimation of standard deviation

σ̂
p
M
L

4
,l

σ̂
p
M
A
P

4
,l

σ̂
M
A
P
b

4
,l

2

2

2

4

4

4

6

6

6

0

0

2 4 6 8 10

block index, l

σ4,l

×102

Fig. 1. Sample trajectories of pML, pMAP and MAPb meth-

ods for one GMM component (k=4,K=8, C=16).

tested estimators, averaged over 100 experiments, for model

orders K ∈ [2, 4, 8, 16] and values of C ∈ [0, 2, 4, 8, 16, 32]
are depicted in Fig. 2. The RMSE values of the pML method

appeared to be independent of K and are thus given only

once. For all tested conditions the MAPb approach performs

better than the pML method. As expected the pMAP ap-

proach reaches comparable performance to that of the pro-

posed MAPb method only for small values of C.

Fig. 2(a) furthermore shows that the RMSEµ values of all

approaches increase with growing variance of the distortion,

as controlled by the parameter C. Superiority of the MAPb

approach over pML and pMAP methods becomes larger

with growing GMM order K and especially for large values
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Fig. 2. (a) RMSEµ and (b) log10(RMSEσ2) of the pro-

posed (MAPb), plain MAP (pMAP) and plain ML (pML)

estimators, averaged over 100 experiments, for model order

K ∈ [2, 4, 8, 16] and for values of C ∈ [0, 2, 4, 8, 16, 32].

of C. Please note the logarithmic scaling of the ordinate in

Fig. 2(b)! While the RMSEσ2 values of the pML and pMAP

approaches increase with growing C, they seem to be inde-

pendent of C for the MAPb approach. Further, it should be

mentioned that the RMSEω values of the MAPb approach

are slightly smaller than those of pML and pMAP. This is

based on the better performance of MAPb in estimating the

means µk,l and variances σ
2
k,l compared to the other methods.

In experiments not reported here we verified the superi-

ority of the proposed MAPb approach over pML and pMAP

methods in tracking time-variant GMM parameters.

4. CONCLUSIONS

AND RELATION TO PRIOR WORK

We have shown how MAP estimation of GMM parameters

can be carried out in the presence of additive white Gaus-

sian noise of known mean and variance. We have proposed a

method to find an approximate posterior from the same family

as the prior, which allows for an efficient estimation in a se-

quential estimation framework. Estimates with significantly

lower error variance are obtained compared to other methods.

While the MAP estimation of the GMM parameters is al-

ready well-known [3], we present for the first time an approx-

imate MAP estimator for the case that the target process is

superposed by additive noise, a situation often occurring in

practice. This is an extension of our earlier work [6], where

we introduced an approximateMAP estimator in the presence

of noisy observations, where the target process was a plain

Gaussian random process.
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