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ABSTRACT

Common spatial patterns (CSP) or its probabilistic counterpart,
PCSP, is a popular discriminative feature extraction method for elec-
troencephalography (EEG) classification. Models in CSP or PCSP
are trained on a subject-by-subject basis so that inter-subject infor-
mation is not used. In the case of multi-subject EEG classification
where brain waves recorded from multiple subjects who undergo
the same mental task are available, it is desirable to capture inter-
subject relatedness in learning a model. In this paper we present
a nonparametric Bayesian model for a multi-subject extension of
CSP where subject relatedness is captured by assuming that spatial
patterns across subjects share a latent subspace. Spatial patterns and
the shared latent subspace are jointly learned by variational infer-
ence. We use an infinite latent feature model to automatically infer
the dimension of the shared latent subspace, placing Indian Buffet
process (IBP) priors on our model. Numerical experiments on BCI
competition IV 2a dataset demonstrate the high performance of our
method, compared to PCSP and existing Bayesian multi-task CSP
models.

Index Terms— Brain computer interface, common spatial pat-
terns, EEG classification, Indian Buffet processes, nonparametric
Bayesian methods

1. INTRODUCTION

Electroencephalography (EEG) is the recording of electrical poten-
tials using multiple sensors placed on a scalp, to collect multivariate
time series data involving brain activities. EEG classification allows
computers to translate a subject’s intention or mental status into a
control signal for a device, which is important for brain-computer
interfaces (BCI) [1,9,12]. Multi-subject EEG classification involves
the categorization of brain waves measured from multiple subjects,
each of whom undergoes the same mental task, so that task-specific
and subject-specific characteristics as well as inter-subject variations
need to be considered.

Common spatial patterns (CSP) seeks a subject-specific spatial
filter to extract discriminative features from EEG [9]. In its proba-
bilistic counterpart, PCSP [15], two linear Gaussian generative mod-
els with a shared basis matrix are jointly learned to infer spatial pat-
terns corresponding to column vectors of the shared basis matrix.
Models in CSP or PCSP do not consider inter-subject relatedness, so
learning spatial patterns are performed on a subject-by-subject ba-
sis. In the case of a subject with much fewer training samples, the
performance of PCSP is deteriorated.

Multi-subject extension of CSP can be found in [2, 8, 10, 11]. In
regularized CSP methods, class-conditional covariance matrices for

a subject of interest are regularized by a linear combination of other
subjects’ covariance matrices, in order to incorporate inter-subject
relatedness [8,10,11]. Learning CSP is re-formulated as a risk mini-
mization problem, where regularization is added to constrain spatial
filters to become similar across subjects [2]. Those methods directly
extend CSP to consider multiple subjects, whereas this work extends
PCSP by assuming multi-subject priors.

Bayesian multi-task learning [5] deals with several related tasks
at the same time, with the intention that the tasks will learn from
each other by sharing hyperparameters (parameters of prior distribu-
tions). A Bayesian multi-task extension of CSP (BCSP) was recently
developed in [6], where subject-to-subject information was trans-
ferred during the learning of model for a subject of interest by shar-
ing hyperparameters across subjects, while treating subjects as tasks.
BCSP [6] works better than PCSP, although similarities among spa-
tial patterns are neglected because all spatial patterns are forced to
share the same hyperparameters. Bayesian CSP with Dirichlet pro-
cess (DP) priors (BCSP-DP) [7] jointly learns and groups spatial
patterns, so that spatial patterns in the same group, determined by
the DP mixture model, share the hyperparameters of their prior dis-
tributions. Coupling similar spatial patterns in the same cluster by
sharing hyperparameters facilitates information transfer among sub-
jects with similar spatial patterns, whereas information transfer is
prevented among dissimilar subjects. However, information transfer
across clusters is not possible, so that the common characteristics
across all the subjects are not captured. We propose this work to
alleviate those limitations in two previous Bayesian CSP models.

In this paper we present a nonparametric Bayesian model for
a multi-subject extension of CSP where given multi-subject EEG
data, allowing inter-subject relatedness to be captured by assuming
that spatial patterns across subjects share a latent subspace. To this
end, we develop Bayesian CSP with Indian Buffet process (IBP)
priors [4], referred to as BCSP-IBP, where spatial patterns and the
shared latent subspace are jointly learned by variational inference.
Our method, BCSP-IBP, is motivated by multi-task learning meth-
ods, based on infinite latent feature models [13, 16]. Numerical ex-
periments on BCI competition IV 2a dataset demonstrate the high
performance of our method, compared to PCSP [15] and existing
Bayesian multi-task CSP models [6, 7].

2. RELATED WORK

We briefly review PCSP [15] and our earlier work on Bayesian CSP
(BCSP) [6]. We are given the data matrixXs,c = [xs,c1 , . . . ,xs,cNsc

] ∈
RD×Nsc which is a collection of EEG signals measured from D
electrodes over trials (Nsc is the number of samples recorded for a
pre-defined number of trials) for subject s ∈ {1, . . . , S} who under-
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goes the mental task involving class c ∈ {1, 2}. The probabilistic
model in PCSP or BCSP assumes thatXs,c is generated by

Xs,c = AsY s,c +Es,c, (1)

whereAs = [as1, . . . ,a
s
M ] ∈ RD×M is the basis matrix for subject

’s’, containing M spatial patterns shared across classes, Y s,c =
[ys,c1 , . . . ,ys,cNsc

] ∈ RM×Nsc the coefficient matrix, and Es,c =

[εs,c1 , . . . , εs,cNsc
] ∈ RD×Nsc is the noise matrix. Each row ofXs,c is

assumed to be already centered (zero mean). Coefficients and noise
are assumed to be zero-mean Gaussians:

ys,ct ∼ N (ys,ct |0, (Λ
s,c)−1), εs,ct ∼ N (εs,ct |0, (Ψ

s,c)−1), (2)

where Λs,c and Ψs,c are diagonal precision matrices for s =
1, . . . , S and c = 1, 2, each diagonal entry of which is assumed to
follow Gamma distribution. When S = 1 (subject-specific model),
the model (1) reduces to PCSP, where spatial patterns are learned by
EM optimization [15] (see Fig. 1(a)).

As Ys,c

Ψs,c

Λs,c

c = 1, 2

Xs,c

s = 1

(a) Probabilistic CSP

As Ys,c

Ψs,c

Λs,c

c = 1, 2

βm

Xs,c

s = 1..., S

m = 1, ...,M

(b) Bayesian CSP

Fig. 1. Graphical representations of PCSP and BCSP models.

Bayesian CSP [6], shown in Fig. 1(b), employed a Bayesian
multi-task learning method [5], enforcing spatial patterns (isotropic
Gaussian prior placed on) across subjects to share the hyperparam-
eters (precision of Gaussian) of their prior distributions which are
allowed for learning from each other subjects:

p(As) =

M∏
m=1

N (asm|0, β−1
m ID),

for s = 1, . . . , S and the precision variables are assumed to follow
gamma prior distribution, p(βm) = Gam(βm|aβ0 , b

β
0 ). Variational

inference was used to determine the variational posterior distribution
overAs [6].

3. BAYESIAN CSP WITH IBP PRIORS

In this section we present the main contribution of this paper.
Bayesian CSP [6], shown in Fig. 1(b), enforces hyperparame-
ters {βm} of the prior distributions over spatial patterns {asm} to
be shared across subjects, so that all spatial patterns are coupled
through the shared hyperparameters. This often facilitates infor-
mation transfer between subjects whose spatial patterns are much
different, leading to the degradation of performance. In order to
overcome this limitation, Bayesian CSP with Dirichet process (DP)
priors [7] was developed, where DP mixture model was incorporated
such that spatial patterns are simultaneously learned and clustered
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Fig. 3. Graphical representation for Bayesian CSP with IBP priors.

across subjects. Spatial patterns in the same cluster share the hy-
perparameters of their prior distributions, facilitating information
transfer between subjects with similar spatial patterns. However,
information is not transferred across clusters in this model.

In order to alleviate limitations existing in our earlier Bayesian
CSP models [6, 7], we base our nonparametric Bayesian model on
infinite latent feature models [13, 16], assuming that spatial patterns
across subjects share a latent subspace to capture subject related-
ness. In our model, spatial patterns and the shared latent subspace
are jointly learned and the dimension of the latent subspace is auto-
matically inferred. We assume that the subject-specific basis matrix
As for each subject is generated by

As = (B �Z)Us + Ξs, (3)

where the common basis matrix is modeled as (B � Z) of a bi-
nary matrix B ∈ RD×K and a real-valued matrix Z ∈ RD×K .
� represents the Hadamard product (element-wise product), i.e.,
[B � Z]d,k = Bd,kZd,k. One important issue in the model (3)
is to determine the intrinsic dimension K of the shared latent sub-
space. Nonparametric Bayesian methods provide a flexible way to
infer the dimension K, allowing it to be infinite. The Indian Buffet
Process (IBP) [4] is a stochastic process which is served as a non-
parametric Bayesian prior over infinite binary matrices. We place an
IBP prior on the binary matrix B, so that the dimensionality K of
the shared latent subspace is automatically inferred. Us ∈ RK×M
is the subject-specific coefficient matrix, and Ξs ∈ RD×M repre-
sents the additive noise matrix. Gaussian priors are placed onZ and
Us, and the noise is also assumed to be Gaussian, thus BCSP-IBP is
formulated by

B ∼ IBP(α),

Zd,k ∼ N (0, ν−1),

Usk,m ∼ N (0, γ−1),

asm ∼ N ([As]:,m|(B �Z)[Us]:,m, (Ω
s)−1),

where Ωs ∈ RD×D is a diagonal matrix. Diagonal entries of Λs,c,
Ψs,c and Ωs are assumed to be drawn from Gamma distributions:

λs,cm ∼ Gam(λs,cm |aλ0 , bλ0 ),

ψs,cd ∼ Gam(ψs,cd |a
ψ
0 , b

ψ
0 ),

ωsd ∼ Gam(ωsd|aω0 , bω0 ).

BCSP-IBP also uses the parameterizations in (1) and (2) (Fig. 3).
The stick-breaking construction of the IBP prior [14] represents the
probability of selecting the k-th entry in d-th row of B as break-
ing a unit-length stick into an infinite number of pieces successively,
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Table 1. Updating equations for variational parameters in BCSP-IBP.

Variational posterior distributions Updating equations for variational parameters

q(As) =
∏D
d=1N ([As]>d,:|νsd,Φs

d)
(Φs

d)
−1 = 〈ωsd〉 IM +

∑2
c=1 〈ψ

s,c
d 〉

〈
Y s,cY s,c>〉 ,

νsd = Φs
d

{
〈ωsd〉

〈
Us>〉 〈[B �Z]>d,:

〉
+
∑2
c=1 〈ψ

s,c
d 〉

[
〈Y s,c〉Xs,c>]

:,d

}
q(B) =

∏D
D=1

∏K
k=1 Bern(Bd,k|rd,k)

r̄d,k = − 1
2

∑S
s=1 〈ω

s
d〉
{〈
Z2
d,k

〉 〈
[UsUs>]kk

〉
+2 〈Zd,k〉 〈[Us]k,:〉

(∑
l 6=k
〈
[Us]>l,:

〉
〈Bd,l〉 〈Zd,l〉 −

〈
[As]>d,:

〉)}
rd,k = 1

1+exp(−r̄d,k)
+
∑k
j=1

(
〈log vj〉 − πkj 〈log(1− vj)〉 − πkj

∑j−1
l=1 〈log vl〉+ πkj log πkj

)
q(Z) =

∏D
D=1N ([Z]>d,:|µd,Σd)

(Σd)
−1 = νIK +

∑S
s=1 〈ω

s
d〉
〈
UsUs>〉� 〈[B]>d,:[B]d,:

〉
,

µd = Σd

{∑S
s=1

(
〈ωsd〉 〈Us〉

〈
[As]>d,:

〉)
�
〈
[B]>d,:

〉}
q(Us) =

∏M
m=1N ([Us]:,m|τ sm,∆s

m)
(∆s

m)−1 = γIK +
〈
(B �Z)>Ωs(B �Z)

〉
,

τ sm = ∆s
m(〈B〉 � 〈Z〉)> 〈Ωs〉 〈[As]:,m〉

q(v) =
∏K
k=1 Beta(vk|avk, bvk)

avk = α+
∑K
j=K Dj +

∑K
j=k+1

∑j
l=k+1(D −Dj)πj,l, Dk =

∑D
d=1 〈Bd,k〉 ,

bvk = 1 +
∑K
j=k(D −Djπj,k), πk,l ∝ exp

(
〈log(1− vl)〉+

∑l−1
j=1 〈log vj〉

)
q(Y s,c) =

∏Nsc
t=1 N (ys,ct |η

s,c
t ,Σs,c) (Σs,c)−1 = 〈Λs,c〉+ 〈AsΨs,cAs〉 , ηs,ct = Σs,c

〈
As>〉 〈Ψs,c〉xs,ct

q(Λs,c) =
∏M
m=1 Gam(λs,cm |aλs,cm , bλs,cm ) aλs,cm = aλ0 + Nsc

2
, bλs,cm = bλ0 + 1

2

〈
[Y s,cY s,c>]m,m

〉
q(Ψs,c) =

∏D
d=1 Gam(ψs,cd |a

ψs,c
d , bψs,cd )

aψs,cd = aψ0 + Nsc
2
,

bψs,cd = bψ0 + 1
2

[
Xs,cXs,c> −Xs,c

〈
Y s,c>〉 〈As>〉− 〈As〉 〈Y s,c〉Xs,c

+
〈
AsY s,cY s,c>As>〉 ]

d,d

q(Ωs) =
∏D
d=1 Gam(ωsd|aωsd , bωsd )

aωsd = aω0 + M
2
,

bωsd = bω0 + 1
2

[ 〈
AsAs>〉− 〈As〉

〈
Us>〉 (〈B〉 � 〈Z〉)> − (〈B〉 � 〈Z〉) 〈Us〉

〈
As>〉

+
〈
(B �Z)UsUs>(B �Z)>

〉 ]
d,d
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Fig. 2. Averaged classification accuracy for target subjects is shown when the number of training samples for non-target subjects, denoted by
na, varies. Three different plots are shown for nt = 1, 12, 24, where nt denotes the number of training samples for target subject for each
class.

such that p(Bd,k = 1|{vj}) =
∏k
j=1 vj , where vj are indepen-

dent random variables drawn from Beta distribution Beta(vk|α, 1).
An independent draw vk is re-scaled, proportional to the length of
previous broken piece,

∏k−1
j=1 vj .

BCSP-IBP provides a flexible model, compared to two previ-
ous Bayesian CSP methods, in the sense that the shared latent sub-
space in BCSP-IBP allows the relatedness across every subjects to

be captured, while the subject-specific characteristics is reflected by
subject-specific coefficients. BCSP-IBP allows the information shar-
ing between all the spatial patterns from every subjects, whereas the
information transfer between subjects in different clusters was pro-
hibited in Bayesian CSP with DP priors [7]. Compared to BCSP [6],
BCSP-IBP allows for subject variations encoded by subject-specific
coefficients and noises, to alleviate negative effects caused by en-
forcing the prior distributions of all the spatial patterns to share the

3349



common hyperparameters in BCSP.
We employ the variational inference method [3] to approxi-

mately compute the posterior distributions over spatial patterns,
where the number of columns of B is limited by a truncation pa-
rameter K. We define a set of variables to be inferred as

Θ =
{
{As},B,Z, {Us}, {Ωs}, {Y s,c},v, {Λs,c}, {Ψs,c}

}
.

The variational inference considers a lower-bound on the marginal
log-likelihood

log p({Xs,c}) = log

∫
p({Xs,c},Θ)dΘ

≥
∫
q(Θ) log

p({Xs,c},Θ)

q(Θ)
dΘ ≡ F(q),

where the Jensen’s inequality was used and F(q) denotes the vari-
ational lower-bound to be maximized. We assumes that the varia-
tional distribution q(Θ) is factorized:

q(Θ) = q({As}) q(B) q(Z) q({Us}) q({Ωs,c})
q({Y s,c}) q(v) q({Λs,c}) q({Ψs,c}).

Most of the expectations in F(q) are easily computed, but the
key difficulty lies in computing the expectations 〈log p(B|{vk})〉,
where 〈·〉 denotes the statistical expectation with respect to the vari-
ational distribution q(·). 〈log p(B|{vk})〉 contains the expectation〈

log
(

1−
∏k
j=1 vj

)〉
, which cannot be computed analytically. We

apply the local variational approach that induces a tractable lower-
bound on F(q), following the technique similar to the one used
in [3], with additional parameters {πk,l} such that〈
log

(
1−

k∏
j=1

vj

)〉
=

〈
log

(
k∑
l=1

πk,l
(1− vl)

∏l−1
j=1 vj

πk,l

)〉

≥
k∑
l=1

πk,l

〈
log

(
(1− vl)

∏l−1
j=1 vj

πk,l

)〉
,(4)

where πk,l > 0 and
∑k
l=1 πk,l = 1 for k = 1, ...,K and l =

1, ..., k. The tractable lower-bound on F(q), F̃(q|{πk,l}), is given
by replacing the expectation in F(q) with the right-side of (4). The
learning algorithm iteratively optimizes q given {πk,l}, and {πk,l}
given q to maximize F̃(q|{πk,l}).

Variational posterior distributions, q(·), are determined by max-
imizing the approximated variational lower-bound F̃(q|{πk,l}),
which is summarized in Table 1, with detailed derivations left out
due to the space limitation. The hyperparameters of the priors
{α, ν, γ, aλ0 , bλ0 , aψ0 , b

ψ
0 , a

ω
0 , b

ω
0 } were also updated to maximize

F̃(q|{πk,l}).
To compute feature vectors from test trials Xs ∈ RD×T , we

computed the expected latent signals Y
s

using ηs,ct in Table 1

Y
s

=
∑

c∈{1,2}

Nsc
Ns

Σs,c〈As>〉〈Ψs,c〉Xs,

where Ns =
∑
c∈{1,2}Nsc. Note that the class prior probabilities

p(X ∈ c) are assumed as Nsc/Ns. Then we took the log of the
variance of each dimension of Y

s
such that

f∗(m) = log

(
1

T

[
Y
s
Y
s>
]
m,m
−
(

1

T

[
Y
s
1T
]
m,m

)2
)
,

where 1T ∈ RT is the vector of all ones. We selected top-n and
bottom-n dimensions of f∗, according to the expected precision ra-
tio between the classes 〈λs1m 〉/〈λs2m 〉. We applied the Linear Dis-
criminant Analysis to transform these feature vectors down to scalar
values which are fed into a minimum distance classifier. The accu-
racy was obtained by the ratio of the number of correctly classified
test trials compared to the total number of test trials.

4. NUMERICAL EXPERIMENTS

We compare the performance of our proposed model BCSP-IPB to
existing models such as PCSP, BCSP [6], and BCSP-DP [7], on
the BCI Competition IV1-2a data set. The data set contains 9 sub-
jects with 4 imagery movements such that left/right hand, right foot,
tongue, and we took trials for left/right hand movements to consider
binary classification problem. Each imagery movement consists of
144 trials. Each trial was cut from 3.5s to 5.5s after the cue, and
consists of T = 500 times points. The data was recorded with 22
electrodes so that D = 22. Every trials were bandpass-filtered from
8 Hz to 30 Hz before further processing. The basis matrices As

were assumed to be square (M = D), and the dimensionality of the
feature vectors were set to six (n = 3) in every models.

At each run of the experiments, we selected one of the subjects
as a target. For the target subject, we randomly selected nt labeled
trials from each class as the training data (Nsc = T · nt). We also
randomly selected na labeled trials from each class of the remaining
subjects (Nsc = T · na). We evaluated the classification accuracies
of the trained models over test trials from the target subject only.
The number of test trials was 72 for each class. We repeated each
run 10 times and averaged the results from each setting of (nt, na).
Fig. 2 shows that the accuracy averaged by target subjects has been
improved by using Bayesian CSPs. The results for BCSP-DP is pre-
sented for different values of truncation level ’K’, which limits the
maximum number of clusters. The maximum possible value for K
in BCSP-DP was M · S = 198. Compared to other Bayesian CSP
models, the proposed model higher improvement as nt increases.

5. CONCLUSIONS

We have presented a Bayesian CSP model with IBP priors for multi-
subject EEG classification, where spatial patterns across subjects are
assumed to share a latent subspace to capture subject relatedness.
Spatial patterns are coupled through sharing common basis vectors
but subject-specific characteristics is reflected by coefficients. Our
nonparametric Bayesian model is more flexible compared to previ-
ous Bayesian CSP models, in the sense that the the dimension of
the shared latent subspace is automatically inferred and information
transfer is allowed between subjects, depending on their relatedness,
without enforcing the hyperparameters shared across subjects or al-
lowing information transfer inside clusters only. Numerical exper-
iments on BCI competition IV 2a dataset confirmed the useful be-
havior of BCSP-IBP, compared to existing PCSP and other Bayesian
Multi-task CSP models.
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