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ABSTRACT
Screening for lasso problems is a means of quickly reduc-
ing the size of the dictionary needed to solve a given instance
without impacting the optimality of the solution obtained. We
investigate a sequential screening scheme using a selected se-
quence of regularization parameter values decreasing to the
given target value. Using analytical and empirical means we
give insight on how the values of this sequence should be cho-
sen and show that well designed sequential screening yields
significant improvement in dictionary reduction and compu-
tational efficiency for lightly regularized lasso problems.

Index Terms— screening, sparse regression, regularized
regression

1. INTRODUCTION

Screening of the lasso problem [1]:

minwi,i=1:p
1/2‖x−

∑p
i=1 wibi‖22 + λ

∑p
i=1 |wi|, (1)

is a means of quickly reducing the size of the dictionary B =
[b1, . . . ,bp] needed to solve a given instance (x, λ) without
impacting the optimality of the solution obtained. This prob-
lem has recently attracted much attention [2–9]. This is partly
motivated by the need to solve larger scale lasso problems
efficiently using limited memory. Prior to solving the lasso
problem, screening uses knowledge of x, λ and B to quickly
identify a set of codewords that receive zero weights (w̃i = 0)
in all solutions w̃ of the current instance (x, λ). This makes
it possible to solve the instance using a smaller dictionary.
Screening thus enables the lasso to be solved faster and to be
applied to larger scale problems.

Current screening methods are based on bounding the so-
lution of the dual problem of (1) within a compact region R.
A tighter bound R enables the removal of more unneeded
codewords fromB. For example,R could be a sphere [2,4] or
the intersection of a sphere and a half space (a dome) [3,5,9].
Let λmax = maxb∈{±bi}pi=1

xTb. Current tests perform well
for λmax/2 ≤ λ < λmax. However, when λ/λmax < 0.3,
the tests fail to provide equivalent performance since known
boundsR are not tight when λ is small. This situation occurs
frequently since one often seeks lightly regularized solutions.

There are approaches which can help with this problem.
For example, [2] used screening to help solve (1) for a se-
quence of instances {(x, λk)}Nk=1. The primary objective was

to quickly obtain a dense sampling of the regularization path
of the problem. At each step, the previously solved instance
(x, λk−1) was used to define a bound for the dual solution of
the next instance (x, λk). This enables a tighter region bound
for the current problem. But solving many instances along the
regularization path is inefficient if we only require the solu-
tion of one instance (x, λt).

In [8] it is proposed to run K steps of the homotopy al-
gorithm to find a solution at the K-th breakpoint on the reg-
ularization path of w̃(λ). This effectively solves a sequence
of lasso problems (via homotopy) to obtain a solution w̃K

at λK > λt. This solution is then used to help screen the
instance (x, λt). This has some advantages over a dense sam-
pling of the regularization path. But it cannot directly con-
trol the values λj used nor how close λK is to λt. In the
worst case, the regularization path is not well defined (a lasso
problem need not have a unique solution) and even when it
is well defined, it can have an exponential number of break-
points (O(3p) where p is the number of codewords) [10].

We propose to adopt the best features of the above meth-
ods: a sequential approach that uses the previous solution to
help screen the next instance, but to do so in an otherwise un-
constrained form: Given x and λt, select N and a sequence
{λk}Nk=1 with λN = λt. Then efficiently solve the sequence
of lasso problems (x, λk) to obtain the solution of the instance
(x, λt). Note, we are only interested in the solution of one in-
stance: (x, λt). The other instances are simply way points in
the computation. The germ of this idea was proposed in [6].

What sets this formulation apart from the methods dis-
cussed above is that we are free to design the sequence
{λk}Nk=1. An equally spaced sequence, for example, is usu-
ally undesirable. A key idea from [3] will also be very
important: a particular dome defined by the previous solution
screens the next instance most effectively. We demonstrate
both analytically and empirically why this is so and why
uniform spacing of the λk is usually undesirable. We also
show empirically that careful selection of the λk can yield se-
quential screening schemes that significantly enhance solving
lightly regularized lasso problems.

2. SEQUENTIAL SCREENING

For simplicity, we assume all codewords bi and the tar-
get vector x are normalized, i.e., ‖x‖2 = ‖bi‖2 = 1, i =
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Fig. 1. An illustration of the dome (5) formed at step k.

1, 2, . . . , p. The Lagrangian dual of (1) [2–5, 11–13]:

max
θ

1/2‖x‖22 − λ2
/2‖θ − x

λ
‖22

s.t. |θTbi| ≤ 1 ∀i = 1, 2, . . . , p,
(2)

will be important in what follows. Let F denote the feasible
set of (2). F is a closed polyhedron that depends only on the
dictionary B = [b1,b2, . . . ,bp].

Current screening tests bound the solution θ̃ of (2) within
a region R ⊂ Rn and thereby derive a corresponding screen-
ing test. One class of tests, [3, 5, 9], uses a dome region
bound D(q, r;n, c) formed by the intersection of a sphere
S(q, r) = {θ : ‖θ − q‖2 ≤ r} and a half space H(n, c) =
{θ : nTθ ≤ c}. This dome region has the following basic fea-
tures. The dome center qd is the point of intersection of the
bounding hyperplane and the line passing through q in the di-
rection n. The signed distance from q to qd is a fraction ψd of
the sphere radius r. The dome radius rd is the maximum dis-
tance one can move from qd within the bounding hyperplane
and dome. This is illustrated in Fig. 1 with q = x/λk.

We wantD(q, r;n, c) to contain the dual solution θ̃ of the
current instance. For example, let θF be a known point in F .
Then the sphere with center q = x/λ and radius r = ‖x/λ−
θF ‖2 must contain θ̃. Moreover, the dual solution θ̃ must
satisfy the constraints of (2). Hence for any bi, |bTi θ̃| ≤ 1.
In particular, let b∗ ∈ arg maxb∈{±bi}pi=1

xTb and λmax =

xTb∗. Then bT∗ θ̃ ≤ 1. This yields the dome bound:

D
′′

= D(x/λ, ‖x/λ− θF ‖2;b∗, 1) (3)

In particular, x/λmax is always a feasible point. Setting θF =
x/λmax in (3) yields the dome region used in [5]. Determin-
ing this version of D

′′
only requires knowledge of (x, λ) and

some minor computation to find λmax and b∗.
The screening test corresponding to dome region bounds

is known [9] and specific instances, differing in the selec-
tion of the dome parameters, have been explored in [3, 5, 9].
However, when (1) is lightly regularized the screening test for
known dome region bounds is not very effective.

To address this we consider a sequence of instances
{(x, λk)}Nk=1, with λ1 > · · · > λN = λt. The idea is that

we sequentially screen and solve each of these instances to
eventually obtain the solution of the desired instance (x, λt).
Let θ̃k denote solution to the dual problem for (x, λk). Then
θ̃k−1 is available for screening the next instance (x, λk).
Using the dome (3) with θF = θ̃k−1 yields the dome bound:

D
′

k = D(x/λk, ‖x/λk − θ̃k−1‖2;b∗, 1). (4)

By Pythagoras’ theorem the dome radius rdk of D
′

k satisfies
r2dk = r2k − r2kψ2

dk, with rk = ‖x/λk − θ̃k−1‖2 (Fig. 1). By
definition we have x/λk − b∗rkψdk = qdk. Hence rkψdk =
bT∗ x/λk − 1 = λmax/λk − 1. Combining and simplifying
these expressions yields:

rdk =
1− λ2max

λ2k
+

2

λk
(λmax − xT θ̃k−1) + ‖θ̃k−1‖22 − 1.

So if θ̃(λ) is bounded as λ goes to 0 (a reasonable assump-
tion), then the radius of the bounding sphere grows like
1/λk. Moreover, using the fixed half space H(b∗, 1) allows
the dome radius rdk to grow like 1/λ2k. This will impede
the effectiveness of the corresponding screening test. The
same conclusion holds for any bounding sphere with radius
O(1/λk) and a fixed half space.

The limitations of D
′

k emphasize the need to extract as
much information as possible from the solution of the previ-
ous instance. Following [3], we will use the previous solution
to form the hyperplane passing through θ̃k−1 with its normal
aligned with x/λk−1− θ̃k−1. Using standard convex analysis
one can show that this hyperplane separates F from x/λk−1.
Combining this hyperplane with the sphere adapted to θ̃k−1
used above, yields the dome bound:

Dk = D(x/λk, ‖x/λk − θ̃k−1‖2;nk−1, ck−1) (5)

where nk−1 = (x/λk−1 − θ̃k−1)/‖x/λk−1 − θ̃k−1‖2 and
ck−1 = nTk−1θ̃k−1. For this bounding region both the sphere
radius and the half space are adapted to the solution of the
previous instance. As λk decreases the sphere radius still in-
creases roughly like 1/λk. But this time, as x/λk recedes the
hyperplane shifts and rotates to cut a smaller dome.

So our proposed sequential screening test is structured as
follows. Given the target instance (x, λt), we screen and
solve a designed sequence of instances {(x, λk)}Nk=1, with
λN = λt and λ1 < λmax (normally λ1 close to λmax). For
the first instance (x, λ1), we screen and solve the lasso prob-
lem using the region D

′′
. This is effective when λ1 is large.

At each subsequent λk, k = 2 : N , the dual solution of
(x, λk−1) is used to construct region Dk given in (5). We
expect this bounding region to be reasonably tight. Hence a
high percentage of the dictionary to be discarded at each λk
including λt. Since we expect to discard a high fraction of
codewords at each step, we also expect the total computation
time for both screening and solving the entire sequence will
be competitive with, or even less than, the time to screen and
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Solver: FeatureSign
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Fig. 2. Comparison of sequential screening (N = 8, 10, geometric
spacing) and one-shot screening (N = 1) on RAND. Top: average
rejection percentage. Bottom: average speedup

solve the one instance at λt. We offer empirical verification
of this fact in §3. One problem remains to be considered: the
design of the sequence {λk}Nk=1.

Screening is easy when λ is large but hard, without a tight
region bound, when λ is small. Hence uniform spacing of
the λk is not the best use resources. It is better to space the
larger values of λk further apart and the smaller values much
closer together. One can get some insight on this by con-
sidering Fig. 1. The segment of a circle (in blue) represents
the bounding sphere and the solid line (in red) and associated
shading (also in red) indicates the bounding half space, both
at step k. The dome (5) is the intersection of these regions.
The point x/ρk is the point of intersection of the line through
0 and x and the hyperplane nTk θ = ck. The similarity of the
two right angle triangles yields a useful formula for the radius
of the dome:

rdk = (
1

λk
− 1

λk−1
)(

1

λk−1
− 1

ρk−1
)−1ak−1. (6)

Here ak−1 = ‖θ̃k−1 − x/ρk−1‖2. Let the λk be uniformly
spaced by ∆. Then by (6), at k = N we have:

rudN =
∆

λt

1

(1− λN−1/ρN−1)
aN−1 ≥

∆

λt
aN−1.
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Fig. 3. Comparison of dome (4) and dome (5) used for sequen-
tial screening with geometric spacing on MNIST500. Top: average
rejection percentage. Bottom: total computation time

So provided aN−1 is bounded away from 0, the dome radius is
unbounded as λt gets smaller. To ensure rudN remain bounded
as λt approaches 0 requires N = O(1/λt). On the other
hand, consider geometric spacing: λk = αλk−1 with 0 <
α < 1. Using (6) this yields:

rgdN =
1− α
α

ρN−1
(ρN−1 − λN−1)

aN−1

Assume aN−1 and ρN−1 are bounded and ρN−1 is bounded
away from 0. Then to ensure rgdN is bounded we need α
bounded away from 0 and this requires N = O(log(1/λt)).
This indicates a logarithmic difference in N between uniform
and geometric spacing. We empirically demonstrate this in
the next section.

3. EXPERIMENTS

We ran experiments on the datasets: RAND: 10,000 28-
dimensional vectors randomly generated using the Matlab
rand() function; and MNIST500: 5000 images of size
n = 28 × 28 = 784, obtained from the first 500 images
of each digit in the MNIST data set. For the basic screen-
ing test to be used at each step in sequential screening we
selected the Two Hyperplane Test (THT) and its codeword
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Fig. 4. Geometric vs uniform spacing on RAND. Top: average
rejection percentage at λt. Bottom: total computation time

based derivative (C-THT) [9]. For each data set, we construct
64 lasso problems, each with a distinct, randomly selected
target x, and use the remaining vectors as codewords. Re-
sults are reported with standard errors over these instances.
Performance is evaluated by the percentage of codewords
discarded (rejected) and the speedup factor. The reported
rejection percentage is the percentage of codewords rejected
by the test at λt. The speedup factor is the ratio of the time to
solve the lasso problem without any screening to the time to
perform the screening and solve the lasso problem. For a fair
comparison of time efficiency, for a one-shot test (N = 1),
the denominator of the speedup factor is the time to screen
plus solve at λt. For sequential screening, the denominator is
the total computation time, i.e., the total time to screen and
solve the entire sequence {(x, λk)}Nk=1. We report results
using the FeatureSign lasso solver [14], but our experiments
indicate consistent results using several lasso solvers.

As Fig. 2 shows, sequential screening significantly out-
performs one-shot screening in both metrics. Fig. 3 com-
pares the performance of the adaptive hyperplane (5) and the
fixed hyperplane (4). The fixed hyperplane dome fares poorly
against the adaptive hyperplane, in agreement with our anal-
ysis. We then use the dome (5) to compare the performance
of geometric and uniform spacing of the sequence {λk}Nk=1.
In each case, the sequence starts from λ1 = 0.95λmax and
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Fig. 5. Geometric vs uniform on MNIST500. Top: average rejec-
tion percentage at λt. Bottom: total computation time

ends at λN = λt. We consider three λt’s each plotted in a
different color in Fig. 4 and Fig. 5. For each λt the geometric
spacing is plotted in a solid line with circle marker and the
uniform spacing is plotted in a dotted line. Geometric spac-
ing has consistently better rejection in less computation time
(when N is appropriately chosen) than uniform spacing. To
achieve the same rejection percentage and/or total computa-
tion time, uniform spacing requires a much large value of N
than geometric spacing. This is agreement with our theoret-
ical analysis. As λt approaches 0, both spacing curves shift
to the right, implying a smaller λt needs more points for the
same performance. However, the margin between geometric
and uniform spacing is much larger as λt approaches 0.

4. CONCLUSION

To solve a lightly regularized lasso problem (small λt), we
have proposed screening and solving a designed sequence of
instances (x, λk) for a decreasing sequence {λk}Nk=1 with
λN = λt. We examined both analytically and empirically
the impact of the regularization sequence on the performance
of the method. We have shown that when λt is small, a well
designed sequential screening algorithm outperforms both
uniform sampling along the regularization path and one-shot
screening tests in both rejection power and computation time.
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