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ABSTRACT
We study the MMV (Multiple Measurement Vectors) com-
pressive sensing setting with a specific sparse structured sup-
port. The locations of the non-zero rows in the sparse ma-
trix are not known. All that is known is that the locations
of the non-zero rows have probabilities that vary from one
group of rows to another. We propose two novel greedy al-
gorithms for the exact recovery of the sparse matrix in this
structured MMV compressive sensing problem. The first al-
gorithm models the matrix sparse structure using a shallow
non- linear neural network. The input of this network is the
residual matrix after the prediction and the output is the sparse
matrix to be recovered. The second algorithm improves the
shallow neural network prediction by using the stacking op-
eration to form a deep stacking network. Experimental evalu-
ation demonstrates the superior performance of both new al-
gorithms over existing MMV methods. Among all, the al-
gorithm using the deep stacking network for modelling the
structure in MMV compressive sensing performs the best.

Index Terms— Compressed Sensing, Multiple Measure-
ment Vectors, Deep Learning

1. INTRODUCTION

In the general framework of Compressed Sensing (CS)
[1],[2],[3], N samples of x ∈ ℜN×1 can be exactly re-
constructed from M < N linear random measurements. This
is expressed as:

y = Φx (1)

where y ∈ ℜM×1 is the measured vector and Φ ∈ ℜM×N

is a random measurement matrix. An important underlying
assumption for the decoder to uniquely recover x given y

and Φ, is that x is sparse in a given basis Ψ. This basis
can be complete, i.e., Ψ ∈ ℜN×N , or over-complete, i.e.,
Ψ ∈ ℜN×N1 where N < N1 (compressed sensing for over-
complete dictionaries was introduced in [4]). More accu-
rately, assuming a complete basis Ψ ∈ ℜN×N , then

x = Ψs (2)
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where s is K − sparse, i.e., s has at most K non-zero el-
ements. Combining (1) and (2) results in y = ΦΨs. The
uniqueness conditions for the exact recovery of s based on the
spark and the mutual coherence of ΦΨ (denoted by µ(ΦΨ))
criteria are expressed by corollary 4 of [5] and theorem 4 in
[6] respectively. As discussed in [5],

spark(ΦΨ) ≤ min{N, rank(ΦΨ) + 1} (3)

and since rank(ΦΨ) ≤ M , the corollary 4 of [5] implies
that M ≥ 2K measurements are needed to guarantee unique
recovery at the decoder. In theorem 4 of [6], since µ(ΦΨ) ≥
1√
M

(approximation of lower bound of µ(ΦΨ) for M ≪ N

presented in [6]), the uniqueness of the recovered s is guar-
anteed when

√
M > (2K − 1). From the above, it is clear

that the conditions to recover a unique s are more optimistic
when stated in terms of spark(ΦΨ) than in terms of mutual
coherence.

In the Multiple Measurement Vectors (MMV) problem,
a set of N2 sparse vectors {si}N2

i=1 stacked as columns of a
matrix S is to be jointly recovered from a set of N2 mea-
surement vectors {yi}N2

i=1 stacked as columns of a matrix Y.
The other two assumptions in the MMV problem are the joint
sparsity of S, i.e., the indices of non-zero entries are the same
for every column in S (all sparse vectors have the same sup-
port), and S is K − row − sparse, i.e. at most K rows of S
have non-zero energy. Exploiting the structure and other prior
information (beyond that of sparsity) about each vector in S

leads to solvers with higher performance. An overview of this
topic is presented in section V of [6].

In this paper, we focus on solving the MMV problem
when the locations of the non-zero entries in the sparse ma-
trix S are not known . However, we know that S is a jointly
sparse matrix and has the following structure: 1) each vec-
tor is sparse but the probability of having non-zero elements
in each vector differs from one region of the vector to an-
other, 2) the probability distribution of the support of each
vector is unknown and 3) the probability distribution of the
locations of non-zero regions in the different vectors are in-
dependent of each other. We propose two greedy solvers for
the MMV problem with the above structure. These solvers
are shown to outperform current MMV solvers. The essence
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of the proposed algorithms is the incorporation of a set of
weights that enhances the impact of the columns of ΦΨ that
have a higher probability of contributing to the actual sup-
port of S. To calculate these weights, we propose two ap-
proaches, a non-linear approach and a stacking non-linear
approach. The stacking non-linear approach can deal with
the huge amount of data more efficiently. It uses the Re-
stricted Boltzmann Machine (RBM) [7],[8],[9] to initialize
the weights and then a Deep Stacking Network (DSN) [10]
to fine tune the weights. We experimentally show that the
performance of the second method is close to the bound pre-
dicted by corollary 4 in [5], i.e., M ≃ 2K .

2. PROPOSED METHODOLOGIES

In the first part of this section, we propose an efficient and fast
greedy solver. This solver which we call Non-linear Weighted
Simultaneous Orthogonal Matching Pursuit (NWSOMP) re-
lies on a non-linear model of the structure in the support. In
the second part, we argue that NWSOMP can not be scaled
across machines for a large scale problem. To solve this prob-
lem, we develop a stacking non-linear version of NWSOMP
that relies on a deep neural network and that is suitable for
large scale data and is easy to parallelize across different ma-
chines.

2.1. Non-linear Weighted Simultaneous Orthogonal Match-
ing Pursuit (NWSOMP)

In the MMV problem, we want to recover a jointly sparse ma-
trix S from the matrix of measurements Y = AS where A =
ΦΨ and A = [a1 a2 . . . aN ] and ai is i-th column of A. In
the Simultaneous Orthogonal Matching Pursuit (SOMP) al-
gorithm [11] to recover S exactly, the atom selection criterion
in each iteration is based on the q-norm1 of the correlation be-
tween the residual matrix R and each atom (ai) of dictionary
A, i.e., ‖aTi R‖q. For the Single Measurement Vector (SMV)
problem, a method that embeds prior information using neu-
ral networks has been proposed in [12]. We first extend this
approach to the MMV problem and then propose our method.
Suppose that Ω is the set of locations of the non-zero rows of
S (|Ω| = K for a K − row − sparse matrix S), then

Y = AΩSΩ (4)

where AΩ is the matrix that includes only those columns of
A whose indices are in Ω and SΩ is vector that includes only
those rows of S whose indices are in Ω. Ω is not known in ad-
vance and the greedy algorithm completes it column by col-
umn. Suppose that at iteration j, the set of the locations of the
non-zero rows is Ωj . Since Ω = Ωj ∪ (Ω \ Ωj), then

Y = AΩjSΩj +AΩ\ΩjSΩ\Ωj (5)

1q-norm of vector v ∈ ℜn×1 is defined as (
n∑

i=1
|vi|q)

1

q .

and therefore the residual matrix Rj will be:

Rj = Y −Yj = AΩ\ΩjSΩ\Ωj +AΩj (SΩj − S
Ωj

j ) (6)

where SΩ\Ωj is the set of non-zero rows of S that have not
been identified yet and (SΩj − S

Ωj

j ) is the estimation error at
the j-th iteration. Hence, a neural network constructed with a
set of weights calculated in the training stage can be used in
the selection step of SOMP. These weights enforce the struc-
ture of support of the sparse matrix S in SOMP. The input of
this network is the vector vec(R) and the output is vec(Ŝj)
(estimation of S at j-th iteration). We formulate this network
as follows:

vec(Ŝ) = W2fh(W1vec(R) + b1) + b2 (7)

Where fh(.) is the activation function of the hidden layer neu-
rons, W1 ∈ ℜnumhid×MN2 is the weight matrix between the
input layer and the hidden layer (numhid is the number of
neurons in the hidden layer), W2 ∈ ℜNN2×numhid is the
weight matrix between the hidden layer and the output layer,
b1 ∈ ℜnumhid×1 is vector of bias values for the hidden layer
neurons and b2 ∈ ℜNN2×1 is vector of bias values for the
output layer neurons.

To find weight matrices W1 and W2, the following min-
imization problem is solved:

(vec(W1), vec(W2)) =

argmin
(vec(W1),vec(W2))

1

2T

T∑

i=1

‖vec(S)ti − vec(Ŝ)i‖22
(8)

Where T is number of training samples, St
i is the ideal output

for a certain input Ri, Ŝi is the approximate output for input
Ri and the operator vec(.) returns the vectorized form of a
matrix. In this paper, a weighted module refers to a trained
one layer feedforward neural network whose inputs are the
normalized residual vector(s) and outputs are the approxi-
mated sparse signal(s). Now, instead of selecting the col-
umn of A that corresponds to the maximum element of vector
c = [‖aT1 R‖q‖aT2 R‖q . . . ‖aTNR‖q]T (as done in SOMP), the
column of A corresponding to the row of Ŝ with the maximum
ℓq norm is selected. It is important to note that to estimate
W1 and W2, St

i should be known in advance for each Ri. In
the other words, St

i for i = 1, 2, . . . , T are the targets of the
neural networks that are generated based on the prior infor-
mation about S. The inputs (Ri) are generated by imitating
the greedy algorithm.

With linear activation functions for the hidden layer and
output layer neurons, (7) becomes a simple linear relation-
ship. A more efficient choice for fh(.) is a non-linear func-
tion like the sigmoid function 1

1+e−t . However with a non-
linear fh(.), solving (8) becomes a non trivial task. Existing
algorithms in the neural networks literature for finding W1

and W2, such as the backpropagation and conjugate gradi-
ent backpropagation are very slow and inefficient when fh(.)

3338



is non-linear. Since we use one hidden layer only, there are
more efficient ways, like the one in [13], to calculate the
weights. In [13], the fact that W2 is dependent on W1 is
taken into account when calculating the gradient. This leads
to the following expression of the gradient of the energy func-
tion E = ‖St − Ŝ‖2F :

∂E

∂W1

= 2R[HT ◦(1−H)T◦[H†(H[St]T )(StH†)−[St]T (StH†)]]

(9)
where H† = HT (HHT )−1, ◦ is the Hadamard product oper-
ator and H is the output of the hidden layer:

H =
1

1 + exp(−W1xin)
(10)

where xin = vec(R). Then we should search in the opposite
direction of the gradient, i.e.,

Wk+1

1
= Wk

1 − ρ
∂E

∂Wk
1

(11)

where ρ is the learning rate. After updating W1 using (11),
W2 is calculated using following closed form formulation:

W2 = (µI+HHT )−1H[St]T (12)

where I is the identity matrix and µ is the regularization pa-
rameter. The proposed greedy solver based on the weights
calculated using (9), (10), (11) and (12) is presented in Algo-
rithm 1.

Algorithm 1 Non-linear Weighted Simultaneous Orthogonal
Matching Pursuit (NWSOMP)

1: Inputs:The CS measurement matrix A ∈ ℜM×N , The matrix of mea-
surments Y ∈ ℜM×N2 , The minimum ℓ2 norm of the residual matrix
(ResMin) as the stopping criterion

2: Output: The matrix of sparse vectors Ŝ ∈ ℜN×N2

3: Initialization: Ŝ = 0; Ŝi = 0; i = 1; Ωi = ∅; Ri = Y
4: procedure NWSOMP(A,Y)
5: while ‖Ri‖2 ≤ ResMin do
6: i← i+ 1

7: Ri ←
Ri−1

max(vec(Ri−1))
⊲ residual normalization

8: vec(Ŝ) = W2fh(W1vec(Ri) + b1) + b2⊲ weight module
9: c← [‖Ŝr1‖q‖Ŝr2‖q . . . ‖ŜrN ‖q]

T

10: idx← Support(max(c))
11: Ωi ← Ωi−1 ∪ idx

12: Ŝ
Ωi

i ← (AΩi )†Y

13: Ŝ
ΩC

i
i ← 0

14: Ri ← Y− AΩi Ŝ
Ωi

i

15: end while
16: Ŝ← Ŝi

17: end procedure

2.2. Stacking non-linear NWSOMP using Deep Stacking
Network (DSN-WSOMP)

There is a main deficiency in the NWSOMP proposed in the
previous section. When we deal with a large scale problem,

Fig. 1. Architecture of a deep stacking network with 3 mod-
ules, i.e., D = 3

it is not easy to calculate W1 and W2 based on the method
presented in the previous section. It is, in fact, computation-
ally difficult because the computation of W1 and W2 is not
easy to parallelize across different machines. In this section,
we present a stacking non-linear version of NWSOMP that is
suitable for large scale data and is easy to parallelize across
different machines.

To explain the stacking non-linear variant of NWSOMP,
we should first describe the Deep Stacking Networks (DSN)
introduced in [10]. A DSN is a layered and modular struc-
ture that mainly resolves the problem of difficult fine tuning
in a Deep Neural Network (DNN) for large scale data. This
difficulty arises from the fact that fine tuning a DNN requires
performing stochastic gradient descent algorithm that is diffi-
cult to parallelize across machines. More details about DNNs
can be found in [14],[15], [16] and [17]. Other applications
of DSNs are introduced in [18] and [19]. The structure of a
sample DSN with three modules is illustrated in Fig. 1. In
this figure, the input data is divided into 3 parts, denoted as
InPart1, InPart2 and InPart3 in Fig. 1. Each module
of a DSN is a specialized one layer network and the output
of each module forms part of the input of its upper module.
Therefore, the dimension of the input of each module in a
DSN is different from that of other modules. More precisely,
the dimension of the input of the j-th module in a DSN with
D modules is:

nj = n+m(j − 1), j = 1, 2, . . . , D (13)

Therefore for each module, the dimension of its input and
of W1 is different from other modules. In the other words,
in DSN-WSOMP, the bottom module is the same as in sec-
tion 2.1. But at higher modules, the relationship (10) still
holds, but xin is different. The basic algorithm to find W2

given W1, is the same as (12). However, finding W1 and
its initialization differs from one module to another. To ini-
tialize W

(1)
1

in the bottom module (Module 1 in Fig. 1), a
restricted Boltzmann machine is constructed separately using
contrastive divergence [14]. A complete explanation about
the design of RBM used in this work is not given due to lack
of space. After initializing W

(1)
1

, we find W
(1)
1

and W
(1)
2
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using the method described in the previous section pertaining
to one layer networks. Now we freeze the value of weights for
module 1, i.e., these are the final value of weights for module
1. For the second module, the part of W(2)

1
that corresponds

to the output of module 1, i.e., W(2)
1a

in Fig. 1, is initialized

with random numbers (Rn in Fig. 1). The part of W(2)
1

that
corresponds to input data, i.e., W(2)

1b
in Fig. 1 is initialized

with the final value of W(1)
1

that was calculated for module
1. After initializing W

(2)
1

, we use the same method that we
used for first module to find W

(2)
1

and W
(2)
2

for the second
module. Then we freeze these values for the second module
and we continue to higher modules. The stacking non-linear
version of NWSOMP, which we denote as, DSN-NWSOMP,
is a solver that uses the architecture in Fig. 1 and the proce-
dure described above to find W1 and W2 (assuming that the
bias vectors b1 and b2 are absorbed in W1 and W2). Details
of DSN-NWSOMP are not presented due to lack of space.

3. RESULTS

This section presents the numerical results of the proposed
and existing solvers for the MMV problem addressed in this
paper. Note that in the results presented in this section, exact
recovery means:

‖Ŝ− S‖
‖S‖ ≤ N2 × 10−5 (14)

where S is the actual sparse matrix, Ŝ is the calculated solu-
tion andN2 is the number of channels. In our experiments, we
assume that we have three channels, i.e., N2 = 3. The number
of realizations for each experiment is 1000. We use a vector of
size N = 100 for each channel and a random Gaussian mea-
surement matrix with normalized columns of size 45 × 100,
i.e., M = 45 measurements per channel. The machine we
used to perform the experiments has an Intel(R) Core(TM) i7
CPU with clock 2.93 GHz and with 16 GB RAM.

To generate a sparse matrix where the probability of hav-
ing non-zero entries in its bands of rows differ from one band
of rows to another, suppose that for each column the proba-
bility distribution of support is made of two Gaussian distri-
butions with means µ1 = 20 and µ2 = 70 and standard devi-
ations σ1 = 3 and σ2 = 6. Therefore, non-zero elements are
concentrated in two regions, one around the 20th entry and
another one around the 70th entry of each vector in S. Also,
we assume all entries of S are positive, because we want to
show that the proposed solvers can exploit two structures at
the same time, i.e., positivity and the structure in the support.
Fig.2 shows the superior performance of the proposed solvers
relative to SOMP and the mixed norm minimization methods.
This was predictable because at each iteration the proposed
solvers make a wiser atom selection than SOMP when finding
the sparse solution (see section 2.1). Note that in this figure,
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Fig. 2. Probability of exact recovery of NWSOMP, DSN-
WSOMP, WSOMP, SOMP and mixed norm (ℓ1,2) minimiza-
tion for different sparsity levels.
the WSOMP solver uses linear modelling and finds W1 and
W2 using the least squares method (”lscov” in MATLAB).
To calculate the weights in NWSOMP and DSN-WSOMP, we
used 512 neurons for the hidden layer, 55000 training matri-
ces2, ρ1 = ρ2 = ρ3 = 0.0005, the maximum number of
iterations for each module was 100 and the regularization co-
efficient for each module was µ = 100. To make sure that we
do not have over-fitting, we used cross validation.

4. DISCUSSION AND CONCLUSIONS

As observed in Fig. 2, the proposed NWSOMP and DSN-
WSOMP methods start to fail when K is increased beyond
K = 22 (which is better than the WSOMP and SOMP
solvers). Note that since M = 45, NWSOMP and DSN-
WSOMP are very close to achieving the bound predicted by
[5], i.e., M = 2K . The better performance of NWSOMP and
DSN-WSOMP is predictable because fh(.) is a non-linear
function. It is worth mentioning that, besides being efficient
for large scale data, DSN-WSOMP has better performance
than NWSOMP. It is important to note that using the method
explained in section 2.1 makes the weight calculation very
fast and practical. In fact, it is not practically possible to run
conjugate gradient backpropagation (”traincgf” in MATLAB)
on the machine used for the experiments of this paper.

In this work, we proposed two greedy solvers to solve the
MMV problem when limited information about the structure
of support of S is known. We showed that these methods out-
perform existing MMV solvers. We also discussed how the
second proposed solver is suitable for large scale data while
the first one is not. Potential applications of this work can be
found in distributed compressed sensing of images and videos
or in Electroencephalography (EEG) signals where the spar-
sity level up to which the practical solver gives exact recovery
is a limitation. For example, having the prior information that
in the transform domain, more non-zeros will occur in the low
frequencies than in high frequencies can be helpful in improv-
ing the performance of the existing solvers using the proposed
solvers in this paper.

2A complete description of how these training matrices should be gener-
ated is not presented due to lack of space
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