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ABSTRACT

Sparsity induced in the optimized weights effectively works
for factorization with robustness to noises and for classifica-
tion with feature selection. For enhancing the sparsity, L1

regularization is introduced into the objective cost function to
be minimized. In general, however, Lp (p<1) regularization
leads to more sparse solutions than L1, though Lp regularized
problem is difficult to be effectively optimized. In this paper,
we propose a method to efficiently optimize the Lp regular-
ized problem. The method reduces the Lp problem into L1

regularized one via transforming target variables by the map-
ping based on Lp, and optimizes it by using orthant-wise ap-
proach. In the proposed method, the Lp problem is directly
optimized for computational efficiency without reformulating
it into iteratively reweighting scheme. The proposed method
is generally applicable to various problems with Lp regular-
ization, such as factorization and classification. In the exper-
iments on the classification using logistic regression and fac-
torization based on least squares, the proposed method pro-
duces favorable sparse results.

Index Terms— Optimization, Lp regularization, sparsity
induced model, orthant-wise optimization

1. INTRODUCTION

Sparsity induced models have attracted keen attention in the
fields of signal processing, such as for factorization [1], pat-
tern classification [2] and computer vision [3]. The sparsity
is crucial for retrieving essential factors from noisy signals,
known as sparse coding [4] and compressed sensing [5], and
for selecting essential (discriminative) features from a plenty
of feature components [6].

In general, the sparsity is induced via the regularization
incorporated into the objective cost function to be minimized,
such as reconstruction errors in factorization and classifica-
tion errors. The sparseness is measured by the number of
non-zero components in the target variable, e.g., weights w,
namely L0 norm ‖w‖0. However, it is difficult to find the
global optimum that minimizes the L0 norm since all com-
binations of nonzero components are required to be checked.

In the compressed sensing [5], given the factors, much re-
search effort has been made to establish an efficient approach
for finding the optimum factor weights with the minimum L0

norm, such as orthogonal matching pursuit (OMP) [7] and
regularized OMP (ROMP) [8]. It is also theoretically shown
that there is the condition to obtain the L0 optimum factors
by solving the L1 regularization [9]. Therefore, the sparsity
is usually address in the form of L1 regularization in most
studies.

On the other hand, there is a work to optimize Lp-
regularized problem (0 ≤ p ≤ 1) mainly based on least-
squares for factorization [1, 10]. The method reformulates
the Lp problem into the iteratively reweighted L1 optimiza-
tions [11]. It, however, requires large computation cost and
is applicable only to small-scale problems since the L1 opti-
mization computed at every iteration is generally time con-
suming. Nonetheless, the Lp regularization (0 ≤ p < 1)
is useful for leading to more sparse solutions than L1. The
property of Lp regularization is also theoretically investigated
in the framework of compressed sensing [12].

In this paper, we propose a method to effectively opti-
mize the Lp regularized problem. The proposed method re-
duces the Lp regularized problem into the L1 problem via
transforming the target variables by the mapping based on Lp

norm. Then, the transformed L1 problem is efficiently op-
timized by using the orthant-wise approach [13] which was
recently proposed to optimize L1 regularized logistic regres-
sion. Our contributions are; 1) we can directly optimize the
Lp regularized problem for computational efficiency without
reformulating it into iterative (exhaustive) L1 optimizations
unlike the other methods [1, 10]. And, 2) the Lp regular-
ization (p < 1) that we address in this study contributes to
favorably provide higher sparsity than L1. 3) The proposed
method is generally applicable to various tasks on not only
factorization but also classification, with Lp regularization for
inducing high sparsity.

2. PROPOSED METHOD

Let w ∈ R
d be the d-dimensional target variables (weights),

and f(w) be the objective cost function which depends on
the task, such as classification and factorization. The opti-
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Fig. 1. Regularization

mization problem that we address in this paper is generally
formulated using Lp regularization by

min
w

f(w) + λ‖w‖p
p, (1)

where λ is the balancing parameter for the Lp regularization
term. The Lp regularization term, ‖w‖p

p =
∑d

i=1 |wi|p, in-
duces sparsity of w for 0 ≤ p ≤ 1; especially, L1 is closely
related to Laplacian priors [14], while L2 is the commonly
used regularization called weight decay [15]. Fig. 1a shows
the form of such regularization of p = 0.5. The standard op-
timization approach such as gradient descent is not directly
applicable since Lp regularized cost function (0 ≤ p ≤ 1) in
(1) has discontinuous first derivatives as shown in Fig. 1a;
meanwhile, only for p = 1, some effective optimization ap-
proaches have been proposed so far [14]. In this study, we
first reduce (1) into L1 regularized problem by transforming
the variable w via the mapping based on Lp norm, and the
resultant L1 problem is effectively optimized by the orthant-
wise approach [13].

2.1. Variable transformation based on Lp

For constructing smooth mapping of the variables, we first
consider to slightly modify the Lp regularization term. Since
the first derivative of Lp reaches ±∞ as wi → ±0, the regu-
larization is relaxed into

l̂p(wi) =

{
pΔp−1|wi| (|wi| ≤ Δ

p )
{
|wi| −

(
1
p − 1

)
Δ

}p

(|wi| > Δ
p )

, (2)

where Δ is the small positive value, say Δ = 10−5 in this
study, for the relaxation and the form of l̂p is shown in
Fig. 1b. This is designed so as to linearly approximate p
root function and to smoothly connect the linear and p root
functions at Δ

p . By using the function l̂p, the optimization

problem (1) is represented by minw f(w) + λ
∑d

i=1 l̂p(wi).
Next, we introduce the following 1-to-1 mapping of the

variable wi; let σ(w) � sign(w) ∈ {−1, 0, 1},

ŵi = σ(wi)l̂p(wi) = t−1
p (wi), (3)

wi = tp(ŵi)=

{ 1
pΔ1−pŵi (|ŵi| ≤ Δp)

σ(ŵi)
{
|ŵi| 1p +

(
1
p − 1

)
Δ

}
(|ŵi| > Δp)

,

(4)
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Fig. 2. Transform function of the variable (p = 0.5)

where the transformation tp is the inverse function of σ(w)l̂p(w)
and it is shown in Fig. 2a. The first derivative of tp is given
by

t′p(ŵi)=

{
1
pΔ1−p (|ŵi| ≤ Δp)
1
p |ŵi| 1p−1 (|ŵi| > Δp)

. (5)

Note that tp is smooth continuous transformation, also result-
ing in the continuous derivative.

By transforming the variables w into ŵ via t−1
p , the opti-

mization problem (1) finally results in

min
ŵ

f(tp(ŵ)) + λ
d∑

i

|ŵi| = f ◦ tp(ŵ) + λ‖ŵ‖1. (6)

This is a standard L1 regularized optimization problem w.r.t.
ŵ, to which any types of L1 optimizer can be applicable; in
this study, we employ the orthant-wise approach [13] which
is effectively applied to L1 regularized logistic regression.

2.2. Orthant-wise Optimization

Andrew and Gao proposed the orthant-wise limited-memory
quasi-Newton (OWLQN) method that effectively minimizes
the cost function including L1 regularization [13]; in that pa-
per, OWLQN is applied to L1 regularized logistic regression.
The OWLQN is based on the L-BFGS, an efficient general
minimizer applicable to differentiable problems [16], and it is
experimentally shown to be effective [14]. Without doubling
the variables nor relaxing the regularization, the OWLQN can
directly minimize (6) by effectively determining the gradients
around zeros; we briefly describe the OWLQN in the follow-
ings, and for further details, refer to [13].

Orthant is defined as the region on which variables never
change their signs along in each coordinate, as an extension of
quadrants in two dimensions. The OWLQN basically works
on the orthant of the current w and goes through the boundary
of the orthant according to the gradients (derivatives) which
are defined especially on wi = 0 as follows. Let C(w) �
f(w) + λ‖w‖1 be the regularized cost function to be mini-
mized, and the regularization term takes the derivative either
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of λ or −λ at w = 0, which results in the three situations
(Fig. 3):

at wi = 0,
a) ∂if < −λ ⇒ ∂iC = ∂if + λ
b) ∂if > λ ⇒ ∂iC = ∂if− λ
c) −λ ≤ ∂if ≤ λ ⇒ ∂iC = 0

(7)

at wi 	= 0, ∂iC = ∂if + σ(wi)λ.

The first two are the cases that the cost C(w) can be decreased
toward positive or negative domain (orthant) of wi, while for
the third case, C(w) has the hollow at wi = 0 by considering
the regularization term, which thus makes the gradient zero.
L-BFGS is applied while retaining the consistency of the or-
thant, and based on (7) the target orthant is changed, going
through or staying at zeros.

Note that the OWLQN is applied to (6) in the proposed
method. The derivative of f ◦ tp(ŵ) is simply given by using
(5) as

∂i(f ◦ tp) = (∂if)t′p(ŵi). (8)

3. EXPERIMENTAL RESULTS

We apply the proposed method to the tasks on classification
and factorization. In these experiments, the classification is
formulated by using logistic regression model and the factor-
ization is based on the least squares. The sparsity is induced
into the weights via Lp regularization for both tasks. In the
proposed method, we employ the regularization of p = 0.5
(L0.5) which produces highly sparse weights more than L1

regularization.

3.1. Classification

For classification, we employ the logistic regression (LR)
model [15]. Let xi ∈ R

d, i = 1, · · · , N be the i-th sample
(feature) vector and yic ∈ {+1,−1}, c = 1, · · · , C be its
label of the c-th class; ±1 indicates whether the i-th sample
belongs to the c-th class or not. Thus, the cost function in the
logistic regression is defined by

f({wc}C−1
c ) = −

N∑

i

C∑

c

yic log ηc(xi; {wc}C−1
c ), (9)

Table 1. Classification performances by logistic regression on
benchmark datasets. ’nnz’ indicates the number of non-zero
weights, and lower nnz means sparser weights.

L1-LR Lp-LR
Method λ acc. (%) nnz acc. (%) nnz
ARCENE 1 71.97 (±6.31) 87.0 (±6.6) 64.99 (±7.16) 19.3 (±1.2)
ARCENE 0.1 68.96 (±7.39) 100.7 (±3.5) 77.48 (±6.60) 22.7 (±1.2)
DEXTER 1 92.0 (±2.65) 229.0 (±61.5) 88.50 (±2.60) 41.7 (±2.5)
DEXTER 0.1 91.5 (±3.12) 288.3 (±61.2) 86.33 (±1.44) 48.0 (±1.7)

DOROTHEA 1 92.69 (±0.95) 152.0 (±78.1) 92.52 (±0.76) 38.3 (±1.2)
DOROTHEA 0.1 92.43 (±0.95) 153.7 (±50.6) 92.87 (±0.80) 43.0 (±6.2)

GISETTE 1 97.61 (±0.07) 579.3 (±16.1) 96.47 (±0.22) 142.7 (±3.1)
GISETTE 0.1 97.53 (±0.16) 656.3 (±16.8) 96.36 (±0.45) 159.3 (±15.8)

MADELON 1 56.08 (±1.89) 470.0 (±3.6) 55.38 (±1.08) 159.7 (±2.3)
MADELON 0.1 55.61 (±1.06) 497.7 (±2.1) 54.61 (±1.18) 342.0 (±11.4)

where wc, c = 1, · · · , C − 1 are the classifier weights to be
optimized, and the (multi-nominal) logistic function ηc is de-
fined by

ηc(x; {wc}C−1
c ) =

{
exp(w�

c x)

1+
PC−1

c exp(w�
c x)

(c < C)
1

1+
PC−1

c exp(w�
c x)

(c = C)
.

(10)
The first derivative is also given by

∂wc
f =

N∑

i

{
ηc(xi; {wc}C−1

c ) − yic

}
xi. (11)

By introducing the Lp regularization into (9), we can obtain
the sparse classifier weights w, which contributes to not only
classification itself but also feature selection; the feature com-
ponents that the non-zero weight is assigned with is regarded
as discriminatively selected features for the classification.

We test the proposed method for the Lp-regularized LR on
the several benchmark datasets1, ARCENE (10000), DEXTER

(20000), DOROTHEA (100000), GISETTE (5000) and MADE-
LON (500) where the numbers in the parentheses indicate the
number of features, i.e., the feature dimensionality d. The
performance is evaluated on 3-fold cross validations and av-
eraged accuracy is reported. The results are shown in Table 1
with comparison to L1-regularized LR [2]. While the clas-
sification accuracies are comparable to L1-LR, the proposed
Lp-LR produces highly sparse classification weights, which
also enables faster classification. The Lp regularization con-
tributes to dig out important features from a large number of
features.

3.2. Factorization

We next apply the proposed method to the task on factoriza-
tion of biological signals of protein dynamics in living cells
(EGFP) and chemical particle dynamics in an aqueous solu-
tion (Rh6G) [17]. Those signals were measured by using fluo-
rescence correlation spectroscopy (FCS) [18]. Automatic fac-
torization of the signals facilitates the biological analysis; the

1UCI-repository http://archive.ics.uci.edu/ml/datasets.html
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signals are difficult to be decomposed into factors by hand due
to heavily overlapped factors (see Fig. 4). We observed 44 se-
quences of EGFP and 53 sequences of Rh6G, and the number
of the sampling time points were 92 (1.6μs≤ t≤ 4505.6μs)
and 120 (2.2μs≤ t≤ 65536μs), respectively. The factors in
this type of signals are physically modeled by the functions
gi(t; τi)= exp(−t/τi), where the parameter τi stands for the
diffusion time.

The input signal s(t) is a linear composite of several factor
signals with weights, s(t) ≈ ∑d

j wjgj(t; τj), and the cost for
the factorization is determined based on least squares;

f(w) =
N∑

i

∫

‖si(t) −
d∑

j

wijgj(t; τj)‖2dt. (12)

where N is the number of signal sequence. The Lp regular-
ization is imposed on the weights w so as to be sparse fac-
torization, and the factorization task is to estimate both the
parameters τj and the weights w. For that purpose, those τj

and w are optimized alternately; given fixed weights w, the
parameters τj are optimized by simply applying gradient de-
scent approach to minimize (12), and for the fixed parameters
τi, the weights w are optimized by using the proposed method
with the derivatives given by

∂wij
f = 2

∫

gj(t; τj)
{ d∑

j

wijgj(t; τj) − si(t)
}

dt. (13)

We initially prepare 20 factors (d = 20) with random initial
parameter values τj (j = 1, .., 20) with λ = 0.1; however,
most of those factors will be assigned with zero weight at
the optimum, and thus the factorization results are non-zero
weights and their corresponding factors (i.e., τ ).

The factorization results produced by the proposed method
are shown in Table 2, and the example of the reconstructed
signal with the retrieved factors is also shown in Fig. 4.
The parameter value τ of the primary factor is estimated
as 196.91μs in EGFP and 27.60μs in Rh6G, both of which
are close to the ideal primary values, 244 (±53)μs and 25
(±11)μs based on the biological knowledge [19]. The sec-
ond factors which are slower than the primary ones can be
caused by such as protein-protein interactions, and the third
and the latter factors are trivial since they are active only at
two sequences in the datasets. The L1 optimization is also
applied for comparison, though decomposing the input sig-
nals incorrectly with wrong factors; the primary factor has
τ = 126.47μs among the obtained 20 factors in EGFP and
the primary factor of τ = 19.0μs among 18 factors in Rh6G.
Thus, it can be said that, in this case that the factors are heav-
ily overlapped, the higher sparsity is required to retrieve the
underlying essential factors from the noisy input (composite)
signals.

Table 2. Factorization results of biological signals by using
the proposed method (Lp regularization)

EGFP Rh6G
primary diffusion time primary diffusion time

τ∗ =244(±53)μs τ∗ =25(±11)μs

[obtained 4 factors] [obtained 3 factors]
diffusion time τ weight w diffusion time τ weight w

196.91 μs 0.77±0.05 27.60 μs 0.83±0.03
3768.22 μs 0.16±0.06 460.89 μs 0.13±0.03
17466.16 μs 0.0062±0.029 2174.27 μs 0.0028±0.01

36832.84 μs 0.0044±0.020
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Fig. 4. Example of the reconstructed signal with the obtained
factors in EGFP. The dotted lines show retrieved components.

4. CONCLUSION

We have proposed a method to efficiently optimize the Lp

regularized problem. In the proposed method, the target
variables, e.g., weights, are first transformed so as to reduce
the Lp regularized problem into the L1 problem. Then, so
transformed L1 problem is efficiently optimized by using the
orthant-wise approach [13]. The proposed method directly
optimizes the Lp problem in a computationally efficient way
without reformulating the primal Lp problem into iteratively
reweighting schemes which are commonly utilized in opti-
mizing Lp regularized problems [1, 10]. The experimental
results on classification using logistic regression and on fac-
torization by least squares demonstrate that the proposed
method produces favorable sparse results.
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