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ABSTRACT
Multi-label learning refers to methods for learning a set of functions
that assigns a set of relevant labels to each instance. One of popular
approaches to multi-label learning is label ranking, where a set of
ranking functions are learned to order all the labels such that rele-
vant labels are ranked higher than irrelevant ones. Rank-SVM is a
representative method for label ranking where ranking loss is min-
imized in the framework of max margin. However, the dual form
in Rank-SVM involves a quadratic programming which is generally
solved in cubic time in the size of training data. The primal form is
appealing for the development of online learning but involves a non-
smooth convex loss function. In this paper we present a method for
online multi-label learning where we minimize the primal form us-
ing the accelerated nonsmooth stochastic gradient descent which has
been recently developed to extend Nesterov’s smoothing method to
the stochastic setting. Numerical experiments on several large-scale
datasets demonstrate the computational efficiency and fast conver-
gence of our proposed method, compared to existing methods in-
cluding subgradient-based algorithms.

Index Terms— Label ranking, multi-label learning, Nesterov’s
method, nonsmooth minimization, stochastic gradient descent

1. INTRODUCTION

Multi-label learning seeks a classification function that predicts a set
of relevant labels for an instance, whereas in multi-class problems
a single label is assigned to an instance. Multi-label problems arise
in various applications, including text mining, scene classification,
image annotation, and bioinformatics, to name a few.

An easy but popular approach to multi-label learning is one-
versus-all (OVA) strategy, which is also known as binary relevance
(BR), where binary classifiers for each category label are indepen-
dently learned. OVA or BR, however, does not take the dependency
between labels into account. Class imbalance problem becomes se-
vere especially when the number of class labels is large, since each
binary classifier in OVA build a positive class by collecting data
points belonging to one label of interest and construct a negative
class by collecting all remaining data points in the rest of labels.

Another popular approach to multi-label learning is label rank-
ing [5, 7, 10, 19], where a set of ranking functions are learned to
order all the labels such that relevant labels are ranked higher than
irrelevant ones. The ranking loss, which measures the number of
label pairs ranked in a wrong order, is minimized in label ranking,
hence pairwise relations between class labels is implicitly consid-
ered. Moreover, label ranking methods can alleviate the class imbal-
ance problem since the minimization of the ranking loss is equiva-
lent to the maximization of the area under ROC curve (AUC) which

is known to be a predictive performance measure less sensitive to
class imbalance [8, 12].

Rank-SVM [7] is a representative implementation for multi-
label ranking where a set of ranking functions are learned by
minimizing the ranking loss in the max margin framework. The
dual formulation in Rank-SVM enables us to use arbitrary kernel
functions, but it involves quadratic programming which requires
quadratic memory space and cubic time complexity in the size of
training data [7]. While an approximation optimization, followed
from Franke and Wolfe [9], was proposed to to reduce the computa-
tional complexity, it is still prohibitive for large scale data.

In this paper we present a method for online multi-label learn-
ing where we minimize the primal form using the accelerated nons-
mooth stochastic gradient descent [17] which has been recently de-
veloped to extend Nesterov’s smoothing method to the stochastic
setting. Since the model is iteratively updated by the gradient cal-
culated from only a single data point, its computational requirement
is considerably cheaper than batch methods. Numerical experiments
on several large-scale datasets demonstrate the computational effi-
ciency and fast convergence of our proposed method, compared to
existing methods, including subgradient-based algorithms.

The rest of this paper is organized as follows. Section 2 presents
related work and Section 3 provides a brief overview of the label
ranking in the framework of regularized empirical ranking loss min-
imization. Section 4 presents our main contribution where we de-
scribe how the accelerated stochastic gradient descent method [17]
is applied to the label ranking problem. Numerical experiments are
provided in Section 5 and conclusions are drawn in Section 6.

2. RELATED WORK

In the last decade, various methods have been proposed to solve
multi-label problems. As pointed out in [21], existing methods can
be categorized into (1) first-order; (2) second-order; (3) higher-order
approaches, in accordance with the order of correlation considered
by classifiers. The first-order approach is usually simple and easy to
implement because the dependence between labels is not considered
at all. In the second-order approach, pairwise relations between la-
bels are taken into account. The high-order approach assumes that
each label is affected by all other labels’s information. In most of
cases, however, that kind of information is modeled in an indirect
way, such as a chain of binary classifiers [18] or an extraction of the
shared subspace among labels [11]. In this paper, we focus on the
label ranking that belongs to the second-order approach.

Various methods for label ranking have been proposed in differ-
ent frameworks. In [19], the existing boosting method is extended to
solve the label ranking (which is called AdaBoost.MR). In [7], the

3322978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



authors provide an extension of SVM for label ranking problems.
In [10], the authors introduce the concept of constraint classifica-
tion, where each instance is labeled to be consistent with a set of
predefined constraints. In [5], the ranking among labels is encoded
into a preference graph, and the ranking functions are learned by
a boosting-based method with the corresponding preference graph.
In [4], a set of perceptrons for each label are jointly learned in on-
line learning setting to minimize a given ranking loss function. The
method is called multi-class multi-label perceptron (MMP).

Stochastic gradient decent (SGD) approaches [2] are useful for
large scale datasets, since they update model parameters only using
the gradient information calculated from a single data point at each
iteration. In addition there have been proposed several methods to
solve the minimization of nonsmooth functions in the stochastic gra-
dient descent manner. One simplest way is to use subgradient infor-
mation instead of gradient, however, its convergence rate is consider-
ably slow [20], i.e., it converges as f(θt)−minθ f(θ) ≤ O(log t/t)
after t iterations. To improve the convergence rate, the authors in
[17] have proposed an accelerated stochastic gradient descent meth-
ods based on Nesterov’s smooth method [15] which approximates
the nonsmooth convex function by a strongly convex function with a
Lipschitz continuous gradient. They have provided a proof that the
convergence of the method is improved to O(1/t) [17].

3. LABEL RANKING FOR MULTI-LABEL LEARNING

In this section, we will briefly explain the label ranking in the frame-
work of regularized ranking loss minimization. Suppose that we are
given a set of N instance-label pairs, {(xi,yi)}Ni=1, where xi ∈
X ⊂ RD are instances and yi ∈ Y = {1,−1}K are label vec-
tors with |Y| = 2K . Denote by Y ∈ RK×N label matrices, where
Yk,i = 1 if the instance xi is assigned label k and otherwise Yk,i =
−1. We also denote by Yi = {k|Yk,i = 1} a set of relevant labels
of the instance xi, and by Yi the complementary set of Yi in Y .

The prediction task of multi-label learning can be implemented
as a ranking system which produces the higher score value for all rel-
evant labels of an instance than its irrelevant labels. Let fk : RD →
R, then our goal is to find a set of K number of functions, such that

fk(xi) ≥ fl(xi), where k ∈ Yi, l ∈ Yi. (1)

In the rest of the paper, we assume that each function fk is linear, i.e.,
fk(x) = m>k x+ bk, wheremk ∈ RD and bk ∈ R. For notational
simplicity, we further assume that each mk is augmented with the
bias term bk and a constant 1 is added into instance x, i.e., mk and
x become a vector of D + 1 length. With M = [m1, ...,mK ] ∈
R(D+1)×K , the empirical pairwise ranking loss of the multi-label
ranking functionsM on the training data is defined as [19]

Remp(M) =
1

N

N∑
i=1

Ri(M), (2)

whereRi is the number of pairs of labels that are ranked in the wrong
order in the ith example, such that

Ri(M) =
1

Ni

∑
(k,l)∈Yi×Yi

1
(
m>k xi ≤m

>
l xi

)
, (3)

whereNi = |Yi||Yi| and 1(π) is the 0-1 loss function which equals
1 if the predicate π is true, otherwise 0.

Due to the discrete nature of the 0-1 loss, a direct optimization
of the ranking loss (2) is not an easy task. We instead consider the

hinge loss function h, which is a continuous convex upper bound on
the 0-1 loss in (2), as a surrogate function:

h(a) = [1− a]+, (4)

where [a]+ = max{0, a}. Thus, the continuous convex upper
bound on the empirical pairwise rank loss (2) is defined as

R̄emp(M) =
1

N

N∑
i=1

R̄i(M), (5)

where R̄i(M) = 1
Ni

∑
(k,l)∈Yi×Yi

[
1−m>k xi+m>l xi

]
+
.With

the appropriate regularizer (e.g., Frobenius norm) for the parameter
matrix M , the minimization of problem (5) can be expressed with
introducing the slack variables ξikl ≥ 0:

minM , ξ
λ

2
‖M‖2F +

1

N

N∑
i=1

1

Ni

∑
(k,l)∈Yi×Yi

ξikl,

subject to m>k xi −m>l xi ≥ 1− ξikl, (k, l) ∈ Yi × Yi,(6)

where λ ≥ 0 is a regularization constant that trades off an empirical
loss and the regularization, and ‖M‖2F =

∑K
k=1 ‖mk‖2 is Frobe-

nius norm. Note that we can arrive at the equivalent minimization
problem to (6) in the max-margin framework [7]. We also have to
note that each function R̄i(M) in (5) is convex, but nonsmooth.

The minimization problem (5) or (6) can be solved in the dual
form [6, 7] that allows us to use arbitrary kernel functions. How-
ever, solving a quadratic programming generally requires O(N2)
memory space and O(N3) time complexity. Such a complexity is
prohibitive for large-scale data sets. To circumvent this problem, the
authors proposed the approximation optimization based on Franke
and Wolfe method [9] (also known as conditional gradient [1]), but
the time complexity of the method is still O(N2K) [6, 7].

4. ONLINE LEARNING WITH ACCELERATED
NONSMOOTH STOCHASTIC GRADIENT DESCENT

In this section we present a method for online multi-label learning
where the primal form problem (5) is minimized using the acceler-
ated nonsmooth stochastic gradient descent optimization [17].

For the nonsmooth objective function as in our case, the classical
update rule of SGD at iteration t is given by [3]

M t+1 = M t − ηt
[
λM t + ∂R̄t(M t)

]
, (7)

where R̄t is a loss function in (5) associated with the example avail-
able at time t (we use a symbol t, instead of i, to represent the it-
eration), ∂R̄t is a subgradient of R̄t and ηt = 1/[λ(t + Ω)] is a
step size at t where Ω is a large positive constant. The method is
guaranteed to converge to optimal solution within some error range
under certain constraints on the objective function and the step size
[3]. However, the stochastic gradient descent method for nonsmooth
functions yields considerably slow convergence rates [3]. To solve
this problem, the authors in [17] propose a accelerated nonsmooth
stochastic gradient descent (ANSGD) method based on Nesterov’s
smooth method [15]. In the rest of the section, we first present the
update rule of ANSGD [17] for our problem (5) in abstract level, and
then give its detail computations.

We consider the smooth approximation of the loss R̄t in (5)
via the convex conjugate [15, 22]. Letting g∗ be the Fenchel dual
of a function g, we would approximate R̄t by a smooth function
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g∗αt
= (g+αtd)∗, where d is a strongly convex function and αt ≥ 0

is a decreasing sequence as t increases. Denoting vec(M t) by a vec-
torization operation forming a vector of length (D+1)K by stacking
the columns of M t, we assume that R̄t can be expressed as

R̄t(M t) = g∗(A>t vec(M t))

= max
βt∈Q

〈
βt,A

>
t vec(M t)

〉
− g(βt), (8)

whereAt is a appropriate linear transformation determined by an ex-
ample (xt,yt) and Q is a domain (convex set) of g. Then inserting
a non-negative strongly convex function d, e.g., d(βt) = 1

2
‖βt‖2,

we can construct g∗αt
that is the smooth approximation of R̄t:

R̄t(M t)

≈ g∗αt
(A>t vec(M t))

= max
βt∈Q

〈
βt,A

>
t vec(M t)

〉
−
(
g(βt) +

αt
2
‖βt‖

2
)
. (9)

As pointed out in [15, 22], g∗αt
has several desirable properties: it

well approximates the original function R̄t, i.e.,

|g∗αt
(A>t vec(M t))− R̄t(M t)| ≤ αtC, for allM t, (10)

where C = maxβt∈Q
d(βt), and has a Lipschitz continuous gradi-

ent with constant at most 1
αt
‖At‖2, where

‖At‖ = max
u,v:‖u‖=‖v‖=1

u>Atv.

The gradient of R̄t with respect to M t also can be approximately
calculated using g∗αt

and the definition of subgradient:

vec
(
∇R̄t(M t)

)
≈

∂g∗αt
(A>vec(M t))

∂vec(M t)

= Atβ̂t, (11)

where β̂t = arg maxβt∈Q
g∗αt

(A>t vec(M t)).
In [17], the authors have proposed a stochastic gradient method

for nonsmooth functions, where Nesterov’s accelerated gradient
method [14] is applied to the aforementioned smoothly approxi-
mated function. They have proven that the convergence rate of
the method is improved to O(1/t) with the positive regularization
constant (λ > 0) [17] . That algorithm is summarized in Table 1.

Algorithm 1: ANSGD [17]
Output: M t

InitializeM0 and Ψ0

for t = 0, 1, 2, ... do
αt = 2

t+1
, ϑt = λ(αt + 1/2αt − 1) + 1, ηt = αt

λ+ϑt

Υt ← (1−αt)(λ+ϑt)M t+αtϑtΨt

λ(1−αt)+ϑt

M t+1 ← Υt − ηt
[
∇R̄t(Υt) + λΥt

]
Ψt+1 ← ϑtΨt−∇R̄t(Υt)

λ+ϑt

end

In order to apply Algorithm 1 to our case, we first need to specify
the function g. To this end, we consider the following equalities:

R̄t(M)

=
1

Nt
max

btkl∈{0,1}

∑
(k,l)∈Yt×Yt

btkl

[
1− (m>k xt −m

>
l xt)

]

=
1

Nt
max

βtkl∈[0,1]

∑
(k,l)∈Yt×Yt

βtkl

[
1− (m>k xt −m

>
l xt)

]
. (12)

Thus based on (8) and (12), we can easily determine the form of
g and At. At is a RK(D+1)×Nt sparse matrix, the jth column of
which (corresponding to the pair (k, l) ∈ Yt×Yt) is constructed by

[At]:,j = [0, ...,0,−
1

Nt
x>t ,0, ...,0,

1

Nt
x>t ,0, ...,0]>. (13)

Here, only the kth and lth blocks of the jth column are occupied. In
addition the function g is automatically given by

g(βt) =

{
− 1
Nt

∑
(k,l)∈Yt×Yt

βtkl if βt ∈ Q
∞ otherwise

, (14)

with the domainQ = [0 1]Nt .
We now explain the details for computing the gradient of R̄t

(11) based on an AUC maximization method in binary classification
problems [22], where the classification function is learned to order
all examples such that positive examples are ranked higher than neg-
ative examples. Since all βtkl are decoupled as in (9), the analytical
solution β̂tkl can be given by solving each scalar quadratic problem:

β̂tkl = median(1, ztl − ztk, 0), (15)

where ztk = 1
αtNt

(
m>k xt − 1

2

)
and ztl = 1

αtNt

(
m>l xt + 1

2

)
.

Then, the gradient of R̄i with respect tomk can be simplified as

∂R̄i(vec(M t))

∂mk
=

1

Nt
ζtkxt, (16)

where

ζtk =

{
−
∑
l∈Yt

β̂tkl if Yk,t = 1∑
l∈Yt β̂ilk if Yk,t = −1

. (17)

Given {ζtk}, the gradient,∇R̄t(M t), can be computed inO(K(D+
1)). Noth that compared to the update rule (7) of SGD, Algorithm 1
additionally involves the computation of {ζtk}. However, applying
the method in [22] into our case, ζtk can be efficiently calculated
after sorting of two lists {ztk}k∈Yt and {ztl}l∈Yt

. Its computa-
tional complexity is dominated by the complexity of sorting the
two lists, and thus is roughly O(K logK). For more details on the
computations of {ζtk}, one can refer to Section 4.2 in [22].

5. NUMERICAL EXPERIMENTS

We demonstrate the performance of our method on a few multi-label
datasets from mulan1, whose detail descriptions are summarized in
Table 1. We compare our method with a batch style method for
Rank-SVM and two online methods for the label ranking, includ-
ing a classical SGD [3] to solve the problem (5) (see the update rule
(7) of SGD) and MMP [4]. The batch style method for Rank-SVM
solves the optimization problem (5) in primal form using the smooth
approximation as in our method. Based on Neterov’s smooth method
in Section 4, the gradient of whole training dataset was calculated,
and the limited memory BFGS [13, 16] was applied to find an op-
timal solution. Note that the original dual formulation for Rank-
SVM [7] is prohibited for most datasets in Table 1 because it requires
a quadric memory space in the size of training data.

Experiment settings for each method are as follows. For all ex-
periments, we used a random 5-folds cross validation method where
the dataset is randomly divided into 5-subsets, in which 1 subset
was used for test data and the remaining subsets were used for train-
ing data. For the batch Rank-SVM, the regularization constant λ

1see http://mulan.sourceforge.net/datasets.html
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Fig. 1. The plot of the regularized hinge ranking loss of our method and SGD for test data, λ
2
‖M t‖2F + 1

|T∗|
∑
i∈T∗ R̄i(M t), as t increases.

We consider two datasets, (a) corel5K and (b) mediamill.

Table 1. Data description: LC means the Label Cardinality (the
average number of 1’s in a label vector).

domain # labels # examples # features LC(K) (N) (D)
corel5K images 374 5,000 499 3.522
rcv1v2 text 101 6,000 47,236 2.880
bibtex text 159 7,395 1,836 2.402

tmc2007 text 22 28,596 49,060 2.158
mediamill video 101 43,907 120 4.376
bookmark text 208 87,856 2,150 2.028

was chosen among {10−6, 10−5, ..., 100} by minimizing the rank-
ing loss on the randomly selected validation set from the training
data. This estimated regularization constant was used for SGD and
our method. Furthermore, in SGD the constant Ω in (7) was set to
103. Note that, although MMP also aims to minimize the pairwise
ranking loss, it optimizes the quite different form of objective func-
tion to our case. Followed by experimental results in [4], we set
isErr function as a loss function to be minimized, which equals 1 if
any pairs of labels are wrongly ordered and otherwise 0. In addition
uniform update rule is used for a weighting method as in [4]. For
all methods, each element of initial solution M0 was drawn from a
Gaussian distribution with mean 0 and variance 0.01. Finally each
online method is assumed to assess a randomly picked data point
from training dataset at each iteration.

We first empirically compare the convergence rate of our method
with SGD. Note that, we did not include the results of MMP since
it minimizes the different objective function. In the rest of ex-
periments, we compare the performance of all methods, including
MMP, in terms of classification performance. In Fig 1, we plot
λ
2
‖M t‖2F + 1

|T∗|
∑
i∈T∗ R̄i(M t), where T∗ is a set of test data.

In both cases (for corel5K and mediamill datasets), we can confirm
that our method converges significantly faster than SGD.

We then compare the performance of all methods in terms of the
predictive performance. Note that, since the label ranking only gives
the order of labels, we here consider the AUC value extracted from
ROC curve for performance measure. To this end, we first computed
ROC curve for K number of scores obtained from each test sam-
ple and then averaged their results across all test data. Then, the
AUC value was calculated from this sample-averaged ROC curve.
Note that by definition of AUC and ranking loss, we can easily
see their equivalence relation, i.e., 1 − ranking loss = AUC. For

three online methods, SGD, MMP and our method, we set the maxi-
mum iteration to 7× 104 and the final solution was averaged among
the whole trajectory to remove undesirable fluctuation, i.e., M̂ =
1
t

∑t
j=1M j . From Table 2, which reports the average AUC val-

ues of each method, we notice that our method shows the compara-
tive performance to the batch method, and outperforms other online
methods for most cases. As a result, based on its fast convergence
rate and reasonable classification performance, we expect that our
method can be applied to real-world applications involving multi-
label datsets which have large number of samples and labels.

Table 2. Performance comparison of the methods in terms of AUC,
where the results are the average values and their standard deviation
(the number in parentheses). The bold face represent the best AUC
value among three online methods, SGD, MMP and our method.

dataset Batch method SGD MMP Our method
corel5K 0.895(0.002) 0.885(0.003) 0.843(0.007) 0.887(0.003)
rcv1v2 0.969(0.001) 0.963(0.001) 0.964(0.002) 0.964(0.001)
bibtex 0.946(0.001) 0.935(0.003) 0.935(0.002) 0.945(0.001)

tmc2007 0.958(0.001) 0.954(0.002) 0.956(0.001) 0.957(0.002)
mediamill 0.953(0.001) 0.945(0.001) 0.948(0.001) 0.946(0.001)
bookmark 0.922(0.001) 0.905(0.002) 0.906(0.002) 0.913(0.001)

6. CONCLUSIONS

We have presented an online multi-label learning method where the
ranking loss function is minimized in the primal form using the ac-
celerated nonsmooth stochastic gradient descent. Since the ranking
functions are updated by the gradient calculated from a single data
point at each iteration, the computational requirement is consider-
ably cheaper than batch methods. Numerical experiments on sev-
eral large-scale datasets demonstrated the computational efficiency
and fast convergence of our proposed method, compared to existing
methods including subgradient-based algorithms.
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