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ABSTRACT

The alternating-direction method of multipliers (ADMM) has been

widely applied in the field of distributed optimization and statis-

tic learning. ADMM iteratively approaches the saddle point of an

augmented Lagrangian function by performing three updates per-

iteration. In this paper, we propose a bi-alternating direction method

of multipliers (BiADMM) that iteratively minimizes an augmented

bi-conjugate function. As a result, the convergence of BiADMM is

naturally established. Unlike ADMM that always involves three up-

dates per iteration, BiADMM opens up an avenue to perform either

two or three updates per iteration, depending on the functional con-

struction. As an application, we consider applying BiADMM for the

lasso problem. Experimental results demonstrate the effectiveness

of our new method.

Index Terms— Distributed optimization, Alternating Direction

Method of Multipliers, Bi-Alternating Direction of Multipliers

1. INTRODUCTION

Consider a decomposable optimization problem with a linear con-

straint

min
x,z

f(x) + g(z) subject to Mx = z, (1)

where f : Rn1 → R
⋃

{∞} and g : Rn2 → R
⋃

{∞} are convex

functions, and M is an n1 × n2 matrix. In recent years, the above

problem-formulation has found many applications in distributed op-

timization and statistic learning [1], such as network resource alloca-

tion [2], compressive sensing [3], channel coding [4]. The research

challenge is how to efficiently reaches the optimal solution of (1) by

exploiting the decomposable structure of the objective function.

In the literature, the dual-ascent method, proposed in the mid-

1960s [5, 6, 7], is a classic approach for solving (1). The method

iteratively approaches the saddle point of a Lagrangian function by

alternatively updating the primal variables (x, z) in (1) and the La-

grangian multipliers. However, the convergence of the dual-ascent

method requires strong assumptions on the objective function [8, 1]

like strong convexity of f(x) and g(z), making it less popular.

In order to bring robustness to the dual-ascent method, the al-

ternating direction method of multipliers (ADMM) was developed

in the mid-1970s [9, 10]. Since then, the properties of ADMM

have been well studied in a series of papers [11, 12, 13, 14]. A

thorough review on ADMM has been provided in [1] by Boyd et

al. ADMM considers an augmented Lagrangian function where a

quadratic penalty function ‖Mx − z‖2 is introduced. At each iter-

ation, ADMM always involve three updates, two coordinate-descent

operations for (x, z) and one gradient-descent operation for the La-

grangian multipliers. It was shown that ADMM possesses a guaran-

teed convergence under very mild conditions [1]. Due to its simplic-

ity and robustness, ADMM has been widely applied in distributed

optimization and statistic learning [1]. Recently, it has been shown

that ADMM possesses a linear convergence rate [15].

2. STATEMENT

We note that ADMM attempts to reach the saddle point of the aug-

mented Lagrangian function, which is interpreted as a minmax prob-

lem. One natural question is if we can build an unconstrained mini-

mization problem that is equivalent to (1). That is the unconstrained

problem implicitly tackles the linear constraint in (1). In general, it is

relatively easy to solve a minimization problem over a minmax prob-

lem. Our primary motivation is to provide an alterative framework

to compute the optimal solution of (1) in a distributed fashion. Our

research may shed light on how to solve more complicated problems

with linear constraints.

Formally, in this paper, we reconsider to solve the decompos-

able problem (1). Inspired by the Fenchel’s duality, we first con-

struct an augmented bi-conjugate function. The new function in-

volves (f(x), g(z)) and also their conjugates [16]. We show that the

new function is lower bounded by zero. Further, the lower bound

zero is achieved if and only if an optimal solution of (1) is reached.

We propose a bi-alternating direction method of multipliers (Bi-

ADMM) to iteratively minimize the augmented bi-conjugate func-

tion. At each iteration, BiADMM may involve two or three up-

dates depending on the form of the augmented bi-conjugate func-

tion. Therefore, BiADMM is more flexible than ADMM w.r.t. the

number of updates. The convergence of BiADMM is naturally es-

tablished due to our functional construction. As an application, we

consider solving the lasso problem by using BiADMM. Experimen-

tal results demonstrate the effectiveness of BiADMM as compared

to ADMM.

3. AUGMENTED BI-CONJUGATE FUNCTION

In this section, we explain how to transform the problem (1) into

an equivalent minimization problem with no explicit constraint. To

achieve this goal, we make use of the conjugate of a function [16].

3.1. The original functions and their conjugate

We consider the problem (1) where the two functions f(x) and g(z)
are closed, proper and convex functions. The Lagrangian function
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associated with (1) is defined by

L(x, z, δ) = f(x) + g(z) + δ⊤(Mx− z), (2)

where δ is the Lagrangian multiplier. The Lagrangian function can

be viewed as a convex function over (x, z) with fixed δ, and a con-

cave function over δ with fixed (x, z). Through the rest of the paper,

we make the following assumption.

Assumption 1. There exists a saddle point (x∗, z∗, δ∗) to the La-

grangian function L(x, z, δ) such that for all (x, z) ∈ R
n1×n2 and

δ ∈ R
n2 we have

L(x∗, z∗, δ) ≤ L(x∗, z∗, δ∗) ≤ L(x, z, δ∗).

Next we introduce the conjugate function of (f(x), g(z)). In

particular, the conjugate of f(x) and g(z) are defined as [16]

f∗(λ) = max
x

λ⊤x− f(x) (3)

g∗(δ) = max
z

δ⊤z − g(z). (4)

f∗(λ) and g∗(δ) are always convex functions irrespective of f(x)
and g(z). We note that the conjugate of f∗(λ) and g∗(δ) yields

the original function f(x) and g(z), respectively, since (f(x), g(z))
are closed, proper and convex functions [16]. In other words,

(f(x), g(z)) and (f∗(λ), g∗(δ))) are conjugate to each other.

Given the conjugate functions (3)-(4), Fenchel’s inequality

states that for all (x, λ) ∈ R
n1×n1 and (z, δ) ∈ R

n2×n2 , there is

f(x) + f∗(λ)− λ⊤x ≥ 0 (5)

g(z) + g∗(δ)− δ⊤z ≥ 0, (6)

where the equality holds when 0 ∈ λ−∇f(x) and 0 ∈ δ −∇g(z).
To clarify, ∇f(x) and ∇g(z) denotes the sub-differential of f(x)
and g(x), respectively.

3.2. Function construction

With the conjugate functions f∗(λ) and g∗(δ), we define the aug-

mented bi-conjugate function as

LΦ(x, z, δ, λ)

= f(x) + g(z) +
ρ

2
‖Mx − z‖22 + f∗(λ) + g∗(δ)

+
η

2
‖M⊤δ + λ‖22 − λ⊤x− δ⊤z, (7)

where the two parameters ρ, η > 0 and Φ = {ρ, η}. The two

quadratic penalty functions in (7) are introduced in order to enforce

the equality constraints z = Mx and M⊤δ = −λ. The name bi-

conjugate comes from the fact that (f(x), g(z)) and (f∗(λ), g∗(δ)))
are conjugate to each other. Fig. 1 visualizes the relationship of the

variables (x, z, δ, λ) in the function LΦ(x, z, δ, λ).
Next we study the properties of the function in (7), which is

summarized in a theorem below:

Theorem 1. The function LΦ(x, z, δ, λ) is lower bounded by zero

for all x, z, δ and λ. Further, the lower bound zero is achieved if

and only if an optimal solution of (1) is reached.

Proof. The proof for the zero lower-bound is trivial. By apply-

ing the Fenchel’s inequality (5)-(6), one can immediately show that

LΦ(x, z, δ, λ) is lower bounded by zero.

Fig. 1. The relationship of the variables (x, z, δ, λ) in (7). z and

δ are related by the quantity δ⊤z. On the other hand, x and λ are

related by the quantity λ⊤x.

Next we show that an optimal solution of (1) leads to the

lower-bound zero of the augmented bi-conjugate function. Suppose

(x∗, z∗, δ∗) is an optimal solution. Then there must exist a δ∗ such

that

0 ∈ ∇f(x∗) +M⊤δ∗

0 ∈ ∇g(z∗)− δ∗

0 = z∗ −Mx∗.

In this situation, if we let λ∗ = −M⊤δ∗ in (7), we obtain

LΦ(x
∗, z∗, δ∗, λ∗) = 0.

Conversely, if the augmented bi-conjugate function equals to

zero, we must have Mx = z and M⊤δ = −λ. Further, from (5)-(6),

the two optimality conditions 0 ∈ λ − ∇f(x) and 0 ∈ δ −∇g(z)
hold. As a result, we obtain an optimal solution to the problem

(1).

Theorem 1 implies that one can minimize the augmented bi-

conjugate function to reach the optimal solution of (1). Further, the

optimal solution is certified if the function value equals to zero. The

above property is highly valuable in practice as it can greatly sim-

plify the design of termination criterion for an optimization method.

Remark 1. It is worth noting that the augmented Lagrangian func-

tion for designing ADMM (see [1]) only introduces one auxiliary

variable δ. ADMM essentially solves a minmax problem. On the

other hand, the function LΦ(x, z, δ, λ) introduces two auxiliary

variables δ and λ. The additional variable λ makes it possible to

convert (1) into an unconstrained minimization problem. Further,

we notice that the augmented bi-conjugate function LΦ(x, z, δ, λ)
has two free parameters ρ and η while the augmented Lagrangian

function for ADMM has one free parameter.

Remark 2. We note that the form of the augmented bi-conjugate

function is not unique. One can construct other functions besides (7).

For instance, one can introduce a replica x̄ of x with the constraint

x̄ = x or a replica δ̄ of δ with the constraint δ̄ = δ. Correspond-

ingly, the quadratic penalty functions have to adapted to tackle the

new linear constraints. In some applications, one particular form of

the function might be favorable over others. In this paper, we focus

on (7) as an example.
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4. THE BI-ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

In this section, we first consider the situation that the two conju-

gate functions f∗(λ) and g∗(δ) can be computed easily from (3)-

(4). In this situation, the alternative minimization of the augmented

bi-conjugate function over the variables arises naturally.

We also consider the situation that f∗(λ) and/or g∗(δ) cannot be

obtained easily. We then extend the augmented bi-conjugate func-

tion by incorporating feedback from last iteration in computing new

estimates.

4.1. Basic bi-alternating direction updating

In this subsection, we assume that the two conjugate functions f∗(λ)
or g∗(δ) can be easily computed. This facilitates the minimization

of LΦ(x, z, δ, λ) over δ or λ by simple computation.

We minimize the function LΦ(x, z, δ, λ) by performing Gauss-

Seidel iteration. Each time we minimize the function over some

variables while keeping all the others freezing. At each iteration,

every variable receives a new estimate. Note that the function

LΦ(x, z, δ, λ) is convex over (x, δ) if (z, λ) are fixed. Conversely,

the function is also convex over (z, λ) if (x, δ) are fixed. One natural

scheme for updating the estimate is as follows

(x̂(k+1), δ̂(k+1)) = argmin
x,δ

LΦ(x, ẑ
(k), δ, λ̂(k)) (8)

(ẑ(k+1), λ̂(k+1)) = argmin
z,λ

LΦ(x̂
(k+1), z, δ̂(k+1), λ), (9)

where k ≥ 0 denotes the number of iterations. The iteration stops

when the function value equals to zero.

Depending on the M matrix and the parameter set Φ, we can

also come up with alternative schemes to update the estimate. For

instance, when M is a square nonsingular matrix and the parameters

(ρ, η) are large enough, the function LΦ(x, z, δ, λ) is convex over

(x, λ) if (z, δ) are fixed. Conversely, the function is also convex

over (z, δ) if (x, λ) are fixed. In this situation, the estimate at kth

iteration can be updated as

(x̂(k+1), λ̂(k+1)) = argmin
x,λ

LΦ(x, ẑ
(k), δ̂(k), λ) (10)

(ẑ(k+1), δ̂(k+1)) = argmin
z,δ

LΦ(x̂
(k+1), z, δ, λ̂(k+1)). (11)

Similarly, one can also consider the case that M is of rank n1 or n2.

We will omit the details here.

Remark 3. We note that the updating scheme (8)-(9) or (10)-(11)

only involves coordinate-descent operations. This is different from

that of ADMM which involves both gradient-descent and coordinate-

descent operations.

4.2. Extended bi-alternating direction updating

We note that for some function f(x) (or g(z)), it may be difficult

to compute its conjugate, making the updating scheme (8)-(9) or

(10)-(11) time-consuming. However, the conjugate of f(x) (or g(z))
coupled with a quadratic function may take a simple form. One such

example is the function ‖Ax − b‖22 where the matrix A has more

columns than rows (see Section 5 for the lasso problem). We con-

sider the above case in this subsection.

At iteration k, we extend the function LΦ(x, z, δ, λ) in (1) by

incorporating the estimate x̂(k) and ẑ(k), which is expressed as

L
(k)
Ψ (x, z, δ, λ)

= f(x) +
βx

2
‖x− x̂(k)‖22 + g(z) +

βx

2
‖z − ẑ(k)‖22

+
ρ

2
‖Mx− z‖22 + f̄∗(k)(λ) + ḡ∗(k)(δ)

+
η

2
‖M⊤δ + λ‖22 − λ⊤x− δ⊤z, (12)

where Ψ = {ρ, η, βx, βz}, and f̄∗(k)(λ) and ḡ∗(k)(δ) are defined as

f̄∗(k)(λ) = max
x

(

λ⊤x− f(x)−
βx

2
‖x− x̂(k)‖22

)

, (13)

ḡ∗(k)(δ) = max
z

(

δ⊤z − g(z)−
βx

2
‖z − ẑ(k)‖22

)

. (14)

For the special case that βx = βz = 0, (f̄∗(k)(λ), ḡ∗(k)(δ)) reduces

to (f∗(λ), g∗(δ)). We assume that f̄∗(k)(λ) and ḡ∗(k)(δ) can be

easily computed due to the quadratic functions. In practice, we have

found the functions in some classic problems have such a property,

like the basis pursuit problem and the lasso problem.

Similarly, we minimize the new function L
(k)
Ψ (x, z, δ, λ) by per-

forming Gauss-Seidel iteration. One natural updating scheme is to

adapt (8)-(9) for the new function. One can also come up other

schemes by making use of the parameter set Ψ. The key point is

to make the function value decreasing when updating the estimate

for the variables.

5. EXPERIMENTAL RESULTS

We first tested BiADMM for a toy example. Our primary motiva-

tion was to show that there is a problem of the form (1) for which

BiADMM is much more efficient than ADMM in terms of the con-

vergence rate. In ADMM, there is one free parameter to be specified,

which we denote as γ. The parameter γ actually corresponds to ρ in

BiADMM.

Also, we tested BiADMM for the classic lasso problem. For this

problem, we constructed and minimized the function L
(k)
Ψ (x, z, δ, λ)

in (12) instead. ADMM was again taken as a reference method for

performance comparison.

5.1. A toy example

In the first experiment, we considered a simple problem where f(x)
and g(z) in (1) are scalar quadratic functions. Specifically, the two

functions take the form as

f(x) =
1

2
x2 − ax (15)

g(z) =
1

2
z2 − bz, (16)

where (x, z) satisfies the linear constraint x = z. It is immediate

that x∗ = z∗ = (a+ b)/2. For the quadratic functions in (15)-(16),

the corresponding augmented bi-conjugate function is convex over

(x, z, δ, λ). Despite the simplicity of the two functions, we applied

BiADMM and ADMM to solve the problem.

In the implementation of BiADMM, we followed the updating

scheme (10)-(11) since LΦ(x, z, δ, λ) is a convex function for any

(ρ, η). For simplicity, we set η = ρ. On the other hand, we im-

plemented ADMM by following [1]. To make a fair comparison,
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the initial value of (x̂(0), ẑ(0), δ̂(0)) for the two methods were set

to be identical (For ADMM, there is no variable λ). To terminate

the iteration of the two methods, the estimate-difference |x̂− ẑ| was

measured. The convergence threshold were set as 10−5.

The convergence results of the two methods are displayed in Ta-

ble 1 for a set of ρ (or equivalently, γ) values. It is seen from the table

that the minimum number of iterations required for BiADMM is 4.

On the other hand, the minimum number of iterations for ADMM is

16. This suggests that BiADMM is able to enhance the information-

exchange between the two variables x and z by choosing the param-

eters properly. The main reason behind it might be that the auxiliary

variable λ in BiADMM provides more freedom to convey informa-

tion between x and z.

ρ = γ 0.01 0.05 0.1 0.5 1 5 10 50

ADMM 657 137 72 22 16 28 43 116

BiADMM 4 5 5 9 12 34 58 225

Table 1. Number of iterations of the two methods for the toy exam-

ple specified by (15)-(16). The parameter γ is from ADMM. The pa-

rameters (a, b) in the two functions of (15)-(16) were set as a = −1
and b = 4.

5.2. The lasso problem

In the second experiment, we considered solving the lasso problem

by using BiADMM. The lasso problem is originated from bioinfor-

matics and machine learning, which is expressed as

min
x,z

α

2
‖Ax− b‖22 + ‖z‖1 subject to x = z, (17)

where A is a m× n matrix (n > m), and α > 0 is a scalar regular-

ization parameter. We note that the conjugate of ‖z‖1 takes a simple

form. However, the conjugate of α
2
‖Ax − b‖22 is rather difficult to

compute due to the fact that n > m. To tackle this issue, we com-

pute the conjugate of α
2
‖Ax−b‖22 coupled with a quadratic function

as defined in (13).

Formally, by setting (βx > 0, βz = 0) in (12), we construct the

augmented bi-conjugate function as

L
(k)
Ψ (x, z, δ, λ)

=
α

2
‖Ax− b‖22 +

βx

2
‖x− x̂(k)‖22 + ‖z‖1 +

ρ

2
‖x− z‖22

+f̄∗(k)(λ) + 1{−1�δ�1} +
η

2
‖λ + δ‖22 − λ⊤x− δ⊤z.(18)

where the indicator function 1{−1�δ�1} is in fact the conjugate of

‖z‖1. We note that the function in (12) is convex over (x, λ) if (z, δ)
are fixed. By using the above property, we alternatively minimized

the function in the experiment as

(x̂(k+1), λ̂(k+1)) = argmin
x,λ

L(k)
ρ (x, ẑ(k), δ̂(k), λ)

ẑ(k+1) = argmin
z

L(k)
ρ (x̂(k+1), z, δ̂(k), λ̂(k+1))

δ̂(k+1) = argmin
δ

L(k)
ρ (x̂(k+1), ẑ(k+1), δ, λ̂(k+1)),

where k ≥ 0. The above BiADMM scheme involves three updates

per-iteration, which is the same as ADMM.

In the experiment, we set (m,n) = (60, 100) and α = 0.9. The

elements in (A, b) were generated randomly from normal Gaussian

distribution. In the implementation of BiADMM, we let (βx, ρ, η) =
(5, 1, 0.005) in (12). To a make a fair comparison, we also chose

γ = 1 in ADMM. Except the above parameters, the experiment-

setup is the same as for the toy example.

The convergence results are displayed in Table 2. Seven pairs

of (A, b) for the lasso problem were generated and tested by the two

methods. It is seen that the convergence speed of the two methods is

comparable. In some cases, BiADMM outperforms ADMM consid-

erably.

1 2 3 4 5 6 7

ADMM 395 407 515 649 535 401 435

BiADMM 230 232 538 348 294 377 484

Table 2. Number of iterations of the two methods for seven realiza-

tions of the lasso problem (17).

6. CONCLUSION

We have proposed a new distributed computational framework for

solving the decomposable optimization problem (1) with linear con-

straint. Namely, we have transformed the original problem into an

unconstrained minimization problem. The augmented bi-conjugate

function to be minimized implicitly tackles the linear constraint.

While ADMM iteratively solves a minmax problem, BiADMM we

have proposed iteratively minimizes the augmented bi-conjugate

function. The key point in constructing the augmented bi-conjugate

function is to introduce one more auxiliary variable λ compared to

the function in the minmax problem.

We have evaluated BiADMM and ADMM for a toy example.

The experimental results suggest that the auxiliary variable λ may

be helpful to accelerate the convergence rate. Finally we have suc-

cessfully applied BiADMM in solving the lasso problem, of which

the performance is comparable to that of ADMM.
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