
END-TO-END LEARNING OF PARSING MODELS FOR INFORMATION RETRIEVAL 

 

Jennifer Gillenwater
*
, Xiaodong He, Jianfeng Gao, Li Deng 

jengi@seas.upenn.edu, {xiaohe,jfgao,deng}@microsoft.com 

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA 

 

 
 

ABSTRACT 

 

Parsers have been shown to be helpful in information 

retrieval tasks because they are able to model long-span 

word dependencies efficiently. While previous work 

focused on using traditional syntactic parse trees, this paper 

proposes a new approach where, unlike previous work, the 

parser parameters are discriminatively trained to directly 

optimize a non-convex and non-smooth IR measure. The 

relevance between a document and a query is then modeled 

by the weighted tree edit distance between their parses. We 

evaluate our method on a large scale web search task 

consisting of a real world query set. Results show that the 

new parser is more effective for document retrieval than 

using traditional syntactic parse trees. It gives significant 

improvement, especially for long queries where proper 

modeling of long-span dependencies is crucial. 

 

Index Terms— information retrieval, parsing model, 

end-to-end optimization, tree edit distance 

 

1. INTRODUCTION 

 

A long query can often better express a user’s intent than a 

short query. However, search results for long queries are 

notoriously worse than those for short queries, e.g., the poor 

performance of search engines for queries with five or more 

words is well-documented in [2]. In the current work, we 

tackle this problem using dependency parsers. Dependency 

parsing models have been shown to be helpful in 

information retrieval (IR) tasks because they are an efficient 

means for exploiting longer-span word dependencies than 

just those within a noun phrase or between adjacent words. 

Previous work in the area of parsing models for IR includes 

[18][11][20]. Table 1 summarizes two key differences 

between such earlier methods and the work to be presented 

in this paper.  

First, our ranking function, weighted tree edit distance 

(TED), is novel. Unlike earlier rankers that compute the 

likelihood of generating a document from a query or vice 

 
 

* Work performed while an intern at Microsoft Research. 

 

versa, we are not constrained to probability space. Further, 

unlike un-weighted TED functions that simply assign a 

constant cost for each type of tree edit operation (see 

Section 3), we condition on the characteristics of the tree 

nodes involved when deciding on the cost and use this as the 

basis for parser optimization.  Both of these differences 

make our ranker more flexible and easier to optimize for IR.  

The second important contribution of this work is the 

automatic learning of the parser parameters with the goal of 

directly optimizing the end-to-end IR measure — mean 

Normalized Discounted Cumulative Gain (NDCG) [15]. 

Each query-document pair in our dataset has a human-

annotated relevance label that is an integer between 0 

(document being irrelevant) and 4 (document being very 

relevant). This serves as our source of supervision. The goal 

is to train the parser such that TED correlates with 

relevance. Previous methods have either: 1) learned the 

parser parameters in an unsupervised manner, which fails to 

take advantage of the supervision information available 

from relevance judgments, or 2) learned the parser 

parameters in a supervised manner but from a supervision 

source that fails to match the document retrieval task, such 

as the standard syntactic parses of the Wall Street Journal. 

The method we propose here not only is supervised but also 

relies on a supervision source that is well-matched to the IR 

task. 

 

Table 1. Summary of previous work 

 Ranking  Parameter Optimization 

Nallapati 

and Allan 

[18] 

Likelihood unsupervised: word co-

occurrence counts 

Gao et al. 

[11] 

Likelihood unsupervised: Viterbi EM 

to optimize likelihood 

Punuakanok 

et al. [20] 

unweighted 

TED 

supervised: standard 

syntactic trees [7] 

This work weighted 

TED 

supervised: optimize 

NDCG 

 
However, training parsers using IR measures is difficult 

in general. Typical IR measures [22], viewed as functions of 

the ranker scores, are either flat or discontinuous 

3312978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



everywhere [4]. Additionally, the measures require sorting 

by score, which itself is a non-differentiable operation. The 

NDCG relevance measure we use is no exception. Formally, 

for a given query q, NDCG is defined as: 

        
 

 
∑

     

         

 

   

 (1) 

where vi ∊ {0, …, 4} is the label for the relevance level of 

the i-th document to q in the sorted list and Z is a 

normalization constant computed such that NDCG@L = 1 

for a perfect ranking of the top L documents. For multiple 

queries, the NDCGs are simply averaged. This measure 

expresses the key intuition that the higher a relevant 

document appears on a list of search results, the better.  

It is easy to verify that NDCG, if used as an objective 

function, is non-smooth, and thus presents a particular 

challenge to most optimization approaches that require 

gradient computation. RankNet [5] solves this problem by 

using an objective whose gradient can be easily computed 

but whose value is only loosely coupled with NDCG. 

LambdaRank [6], an improved version of RankNet, amounts 

to scaling the gradients of RankNet by a function of NDCG. 

In this work, our goal is to optimize parser parameters to 

maximize NDCG; that is, to ensure that the TED between 

the parse of a query and the parse of a relevant document’s 

title is small.  Thus, we use the LambdaRank objective to 

optimize the parser parameters. In short, we do so by 

defining our ranker to be a function of the parser 

parameters, which enables us to take gradients of the 

LambdaRank objective with respect to these parameters. 
 

2. DEPENDENCY PARSING MODEL 

 

The parsing model we use employs independent, directed 

links. Given a sequence of words w = w1 … wn, let Tw refer 

to any projective dependency tree for this sequence. Our 

model assigns the following probability to the parse: 

        ∏       

        

  (2) 

where wi → wj denotes wi is the parent of wj, and       
 

        . We use          
  to denote the entire set of 

parser parameters. In practice, to combat sparsity problems, 

instead of having parameters for each pair of words, we 

group words into semantically meaningful categories by 

hierarchical word clustering [12] and have parsing 

parameters for each pair of categories. In our experiments, 

32 clusters are created by building a binary word clustering 

tree with 6 levels. Additionally, note that we only parse 

document titles, as the title is the most effective portion of a 

document for web document retrieval [10]. 

 

3. WEIGHTED TED RANKER 

 

To quantify the relevance of a particular document d to a 

query q, we assign each (q, d) pair a score based on the 

weighted edit distance between their parse trees. Formally, 

let N(T) denote the set of nodes in parse tree T, and let M 

represent the set of node substitutions:   {        

      (  )         }, where Tq and Td denote the 

query tree and the document tree, respectively, qi and dj 

denote the i-th and the j-th node in Tq and Td, respectively, 

and     indicates dj substitutes for qi. Similarly, let 𝜀 

denote an empty node, and define J as the insertion set: 

  {              }, and I as the deletion set: 

  {          (  )}. Then the TED scoring function 

is:  

       ∑          

       

 ∑      

   

 ∑      

   

 
(3) 

where we define xi as shorthand for the parameter associated 

with the creation of node i in the query tree Tq (i.e. 

         ), and yj analogously. We use the algorithm of [9] 

for computing the sets M, J, I that give the minimum TED 

value. For the cost functions g(∙) we experimented with a 

few variations.  The functions we found to work best take 

the following forms: 

  (     )   (                   )
(     )

     
 

  (  )   ,           

(4) 

For substitution, the cost gM is zero if a “match 

condition” is satisfied, i.e., the cost is zero if both the nodes 

involved in the substitution match (are in the same cluster at 

the 6
th

 level of the tree built using [12]) and their parents 

match. Otherwise, the substitution cost is a sum of parser 

parameters. To provide finer granularity, the cost is further 

scaled by  

      
, where l is a measure of how related the words 

at the nodes corresponding to xi and yi are. Specifically, we 

check the match condition at each level of the clustering tree 

from level 6 up until it is satisfied. We then set l equal to the 

satisfying level #, plus an offset of 2 to ensure  

      
  .  

The insertion and deletion costs are simpler. For 

insertion, the cost is zero since a document title is often 

longer than a query even if the document is very relevant. 

For deletion, the cost function corresponds to paying a cost 

proportional to the certainty of the corresponding branch in 

the parse tree. 

 

3313



4. TRAINING PARSING MODEL FOR NDCG 

 

We now define an objective function for optimizing the 

parser parameters θ. The design of the objective follows the 

pairwise learning-to-rank paradigm outlined in [5][6]. 

Consider a query q
(k)

 and two documents, d
(h)

 and d
(s)

, and 

suppose d
(h)

 is more relevant to the query than d
(s)

. We 

define the discriminant function: 

        (         )   (         )  (5) 

Intuitively, we want to learn a model to increase dk,h,s. 

Thus, we use the following logistic loss over dk,h,s, which 

can be shown to upper bound the pairwise accuracy:  

                         (6) 

Note that Ck,h,s is convex in dk,h,s. The overall objective is 

expressed in terms of this cost function as:  

   
 

∑ ∑ ∑       

  
     

      

  
     

   

   

   

  (7) 

where Q is the set of all queries and       is the set of 

documents for query q
(k)

, sorted by relevance judgment. To 

ensure normalization and non-negativity, we add to the 

objective the following constraints:  

∑       

   

              (8) 

where V is the set of word clusters.  

To optimize the objective, we form its Lagrangian dual 

with Lagrange multipliers λ, ν:  

   
     

   
 

∑       

     

 ∑   (∑       

   

)

   

 ∑    

   

   

 

 

and perform gradient descent on this. The step size for 

gradient descent is selected using line search [19].  

This objective correlates with NDCG, and the correlation 

can be further improved by scaling parameter updates by the 

NDCG gain of swapping two documents, as in [6]. i.e., 

scaling 
       

  (         )
 by:  

 

  
  

       
      

 
(

 

            
 

 

            
) 

 

and scaling 
       

  (         )
 by   . The      and      in this 

formula represent the ranks of documents h and s for query 

k, and v is the relevance label as defined in eq. (1). Observe 

that this scaling ensures   
       

  (         )
 will be positive, 

forcing the resulting parameter update to increase 

 (         ). [6] showed that following these scaled 

gradients is equivalent to optimizing an implicit convex 

objective and so should converge to the objective’s global 

minimum.  

A summary of our training procedure is given by 

Algorithm 1. Note that while the objective function is 

convex, the overall process is not guaranteed to find a global 

optimum because parse trees change as the parser 

parameters are updated (step 3). Thus, TEDs can depend on 

different parameters from one iteration to the next. In 

practice we found that, despite the non-convexity of the 

overall problem, the objective still tends to decrease over 

time, and training converges quickly after about 20 

iterations (Fig. 1). 

 

 

 
 

Algorithm 1: Training Procedure 

 

 

5. EXPERIMENTS 

 

We evaluate the retrieval models on a dataset that contains 

2,050 English queries, each of which is at least 5 words 

long, sampled from one year’s worth of query logs of a 

commercial search engine. On average, each query is 

associated with 185 web documents. In our experiments, the 

dataset is split into two sets: a training set that contains 80% 

of the queries and a test set that contains the remaining 20%.  

To study the effectiveness of our optimization method for 

parser parameters, we plot the objective value w.r.t. training 

iterations. After each update, the objective is always lower 

than before, since it is convex. However, because we then 

re-compute the structure of the 1-best parse trees (line 3 in 

Algorithm 1), the value of the objective tends to increase 

somewhat before the next parameter update. Nevertheless, 

overall the objective decreases as desired; the “before” 

curve that reflects the true objective shows a substantial and 

relatively smooth decrease. 

In the evaluation, we compare the proposed end-to-end 

(E2E) learning procedure to a maximum likelihood (ML) 

trained baseline. That is, instead of directly optimizing 

NDCG, the baseline uses the Viterbi Expectation-

Maximization (EM) algorithm to maximize the likelihood of 

3314



the parse trees. Then the same tree edit distance ranking 

function is applied to both sets of parse trees.  

 

 
Figure 1: Objective value just before updating the 

parameters (before line 7 in Algorithm 1) and after updating.  

 

One goal of this work is to better exploit long-span word 

dependency information to help the IR performance for long 

queries. In order to study the impact of the proposed method 

on queries with different lengths, we break down the test set 

into four groups by query length, and report the results for 

each group separately, as a percentage of NDCG@10.  We 

also perform a significance test using the paired t-test. 

Differences are considered statistically significant when p-

value is less than 0.05. Results are summarized in Table 2.  

 

Table 2. Information retrieval results on the test set as a 

percentage of NDCG@10. 

Query 

length 

Number 

of 

queries 

  ML 

trained 

  E2E 

trained 

Improve

-ment 

5 211 32.16 32.27  +0.11 

6   92 30.05 30.33  +0.28 

7   51 27.69 28.20    +0.51
†
 

≥ 8  56 24.52 25.18    +0.66
†
 

The superscript 
†
 indicates that the improvement is 

statistically significant         . 

 

As shown in Table 2, the end-to-end optimized parsing 

model outperforms the ML-trained parsing model 

significantly for queries that contain seven words or more. 

These results demonstrate that the end-to-end optimized 

parsing model can better model the long-span word 

dependency information than the baseline parsing model.  

 

6. OTHER PRIOR WORK 

 

The idea of training the parser to directly optimize the 

quality of document retrieval traces back to minimum 

classification error (MCE) training [16][13], and is also 

similar to the end-to-end decision-feedback training 

approaches that have been recently applied to speech 

translation [25] and spoken language understanding [24]. In 

this work, as shown in the experimental results, we 

successfully applied this idea to learning parser parameters 

for IR tasks. 

With regard to improving search results for long queries, 

there are other approaches besides using parsing models. 

These range from random walks on word graphs [8], to 

language models [1] and phrase-based translation models 

[21], to Markov random fields that tie adjacent query words 

or tie all words within each noun phrase [17]. In contrast to 

these works, in this paper we tackle the long-query problem 

using parsing models, for three reasons. First of all, parsing 

allows us to exploit longer-range dependencies than just 

those within a noun phrase or between adjacent words. 

Secondly, by imposing standard parsing constraints 

requiring that the dependencies in each parse form a 

projective tree, we can take advantage of existing dynamic 

programming algorithms for parsing.  Lastly, with parse 

trees we are able to explore a different sort of ranking 

function than is usually used in IR: tree edit distance. 

 

7. CONCLUSION 

 

We presented a novel method for training a parser for IR. 

By combining a LambdaRank-based objective with a new 

weighted TED ranker whose ranks are a function of the 

parser parameters, we introduced a method for optimizing 

parser parameters directly for NDCG. Experiments 

demonstrate that the new training method converges well. 

Test results show the superiority of this training method 

over conventional maximum likelihood training. 

We could further improve the approach in various ways. 

Possible avenues of exploration for enhancing this gain 

include: 1) using a TED that allows for additional operations 

such as node re-ordering, 2) increasing training set size 

dramatically by using click data to provide implied 

relevance judgments, as in [3], 3) learning one parser for 

queries and a separate parser for document titles, and 4) 

improving the optimization using methods such as extended 

Baum-Welch, as was done in [14] for large-scale 

parallelized discriminative training. 

In a different vein, we also intend to pursue optimizing 

the parser’s structure. The current parser design focuses on 

learning parser parameters only. In future work we hope to 

also optimize the parser structure by incorporating 

structured learning techniques published in the recent 

literature [23]. 

 

 

8. REFERENCES 

 

[1] M. Bendersky and B. Croft. “Discovering key concepts 

in verbose queries.” In Proc. SIGIR, 2008. 

[2] M. Bendersky and B. Croft. “Analysis of long queries 

in a large scale search log.” In Proc. WSCD, 2009. 

3315



[3] J. Boyan, D. Freitag, and T. Joachims. “A machine 

learning architecture for optimizing web search 

engines.” In Proc. AAAI Workshop, 1996. 

[4] C. Burges. “Ranking as learning structured outputs.” In 

Proc. NIPS, 2005. 

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. 

Deeds, N. Hamilton, and G. Hullender. “Learning to 

rank using gradient descent.” In Proc. ICML, 2005. 

[6] C. Burges, R. Rango, and Q. V. Le. “Learning to rank 

with non-smooth cost functions.” In Proc. NIPS, 2006. 

[7] M. Collins. “Three generative, lexicalized models for 

statistical parsing.” In Proc. ACL, 1997. 

[8] K. Collins-Thompson and J. Callan. “Query expansion 

using random walk models.” In Proc. CIKM 2005. 

[9] E. Demaine, S. Mozes, B. Rossman, and O. Weimann. 

“An optimal decomposition algorithm for tree edit 

distance.” Transactions on Algorithms, 2009. 

[10] J. Gao, X. He, and J.-Y. Nie. “Clickthrough-based 

translation models for web search: From word models 

to phrase models.” In Proc. CIKM, 2010. 

[11] J. Gao, J.-Y. Nie, G. Wu, and G. Cao. “Dependence 

language model for in-formation retrieval.” In Proc. 

SIGIR, 2004. 

[12] J. Goodman. JCLUSTER. Toolkit, 

http://research.microsoft.com/~joshuago, 2002. 

[13] X. He, L. Deng, and W. Chou. “A novel learning 

method for hidden Markov models in speech and audio 

processing.” In Proc. IEEE Workshop on Multimedia 

Signal Processing, 2006. 

[14] X. He, L. Deng, and W. Chou. “Discriminative learning 

in sequential pattern recognition.” In IEEE Signal 

Processing Magazine, September, 2008. 

[15] K. Jarvelin and J. Kekalainen. “IR evaluation methods 

for retrieving highly relevant documents.” In Proc. 

SIGIR, 2000. 

[16] B-H. Juang and S. Katagiri, “Discriminative learning 

for minimum error classification.” In IEEE 

Transactions on Signal Processing, 1992. 

[17] D. Metzler and B. Croft. “Latent concept expansion 

using Markov random fields.” In Proc. SIGIR, 2007. 

[18] R. Nallapati and J. Allan. “Capturing term 

dependencies using a language model based on 

sentence trees.” In Proc. CIKM, 2002. 

[19] J. Nocedal and S. Wright. Numerical Optimization, 

chapter 3. Springer Verlag, 1999. 

[20] V. Punuakanok, D. Roth, and W.-T. Yih. “Natural 

language inference via dependency tree mapping: An 

application to question answering.” Computational 

Linguistics, 2004. 

[21] S. Reizler, A. Vasserman, I. Tsochantaridis, and Y. Liu. 

“Statistical machine translation for query expansion in 

answer retrieval.” In Proc. ACL, 2007. 

[22] S. Robertson and H. Zaragoza. “On rank based 

effectiveness measures and optimization.” In 

Information Retrieval, 2007. 

[23] R. Socher, C. Lin, A. Ng, and C. Manning. “Parsing 

natural scenes and natural language with recursive 

neural networks." In Proc. ICML, 2011. 

[24] S. Yaman, L. Deng, D. Yu, Y. Wang, and A. Acero. 

“An integrative and discriminative technique for spoken 

utterance classification.” In IEEE Transactions on 

Audio, Speech, and Language Processing, 2008. 

[25] Y. Zhang, L. Deng, X. He, and A. Acero. “A novel 

decision function and the associated decision-feedback 

learning for speech translation.” In Proc. ICASSP, 

2011. 

 

3316


