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ABSTRACT

Solving a lasso problem is a practical approach for acquiring

a sparse representation of a signal with respect to a given dic-

tionary. Driven by the demand for sparse representations over

large-scale data in machine learning and statistics, we explore

lasso screening tests. These enhance solution efficiency via

the elimination of codewords absent in the optimal solution

prior to detailed computation. On basis of the concept of a

region test and the recently introduced dome test, we propose

the 2-codeword test, which uses two codewords together in a

correlation screening test. In addition to the rejection rate as

the performance measure, we introduce an innovative way to

access the performance of a screening test, called the uncer-

tainty measure, via a comparison with the optimal test.

Index Terms— Optimization, Algorithms, Machine

learning

1. INTRODUCTION

Given x,bi ∈ R
p, i = 1, ...,m, the lasso problem is defined

as follows:

min
w1,w2,...,wm

1

2
‖x−

m
∑

i=1

wibi‖
2
2 + λ

m
∑

i=1

|wi|. (1)

We assume ‖x‖2 = ‖bi‖2 = 1, i = 1, ...,m. The lasso prob-

lem finds a representation of x over the set of m known code-

words B = [b1,b2, ...,bm] with the sparsity of the represen-

tation controlled by the λ weighted ℓ1 penalty. The optimizer

w̃ is used as a sparse feature vector for the corresponding x

in subsequent processing tasks such as classification. Diffi-

cult problems in computer vision such as object recognition

[1] seem amenable to this form of sparse representation.

The convex optimization (1) becomes more time consum-

ing to solve as the size of the dictionary m grows large. This

is quite common in applications such as face recognition [2].

To address this challenge, screening tests have been intro-

duced to reduce the dictionary size prior to solving a lasso

problem [3, 4, 5, 6, 7, 8, 9, 10]. For each target vector x, the

screening test efficiently identifies a set of bi that receive zero

weights w̃i in the optimal solution of (1). By removing these

codewords, the size m of the dictionary B is reduced without

affecting the optimal solution. Thus the performance of the

algorithm for solving the lasso problem is improved.

To achieve such improvement, the test should be efficient

in terms of time, e.g., linear in the dimension of data p and the

size of the dictionary m, and it should not alter the optimal

solution. In [3], the SAFE rule rejects bi when |xTbi| < λ+
λ/λmax−1 where λmax = maxi |x

Tbi|. In [5], three Sphere

Tests (ST) are introduced. ST1 and ST2 place a threshold

on |xTbi| while ST3 investigates also using |bT
∗ bi| where

b∗ = argmaxbi
= |xTbi|. These three tests attempt to

bound the optimal solution θ̃ of the dual problem of (1) within

a sphere (hence the term sphere test). In [6], the bounding

region is reshaped into a dome by cutting the bounding sphere

using a hyperplane defined by the codeword b∗. The resulting

test yields improved codeword rejection.

Following [10], in this paper we employ a more general

notion of the dome test used in [6]. This is described in §3.1.

Moreover, we use an additional codeword to construct a new

sphere to bound the dual solution (§3.2). This procedure has

the possibility of being applied recursively. This leads to a

2-codeword test which has exhibits improved rejection power

and computational time. This will be illustrated in §4. A new

metric called the uncertainty measure is used to assess the

performance of a screening test. This measures the potential

room for improvement of a particular screening test.

2. PRELIMINARIES

Consider the Lagrangian dual problem of (1):

max
θ

1

2
‖x‖22 −

λ2

2
‖θ −

x

λ
‖22

s.t. |θTbi| ≤ 1 ∀i = 1, 2, ...,m.

(2)

The solution of the primal form w̃ and that of the dual θ̃ are

related through:

x =
m
∑

i=1

w̃ibi+λθ̃, θ̃
Tbi ∈

{

{sign w̃i} if w̃i 6= 0,

[−1, 1] if w̃i = 0.
(3)

A detailed derivation of these claims is available in the sup-

plementary material of [5].
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Observing the form of (3), one straightforward screening

method called the core rejection test is given by:

Reject bi : if |θ̃Tbi| < 1. (4)

However, executing (4), requires knowing θ̃ in advance,

which is not feasible since this is equivalent to solving the

lasso problem. Despite this fact, the core rejection test serves

as a benchmark for evaluating screening tests since it rejects

every bi with w̃i = 0 (see (3)). We only consider screen-

ing tests which are compliant with the core rejection test. A

test T1 is compliant with T2 if T1 only rejects codewords

that are rejected by T2. Compliance with the core rejection

test implies that the test only rejects bi with w̃i 6= 0. Tests

mentioned in §1 are all compliant with the core rejection test.

Some geometric insight can also be deduced from (2).

In the p-dimensional space containing x and bi ∈ R
p, i =

1, . . . ,m, we seek a point θ̃ which is feasible for the dual

problem and is closest to x
λ

. The feasible region of the dual

problem (2) is determined by the set of linear constraints in

(2) corresponding to hyperplanes perpendicular to each bi.

The optimal dual solution θ̃ must lie in this region.

A screening test can be identified with a region R in this

space and compliance can be interpreted in terms of an inclu-

sive relationship between regions:

Lemma 1. Let R1,R2 be two regions, R1 ⊂ R2 =⇒ TR2

is compliant with TR1
.

For the core rejection test, the region R is just the point

θ̃. This confirms that the core rejection test T{θ̃} is optimal

since the region can’t be further reduced.

The dome test in [6] first bounds θ̃ within a sphere (q, r0):

B = {θ : ‖q− θ‖2 ≤ r0} (5)

where q = x/λ and r0 = 1/λ − 1/λmax. To see why B
bounds θ̃, note that since ∀i : |xTbi/λmax| ≤ 1, x/λmax is a

feasible solution to the dual problem (2). Hence the distance

from θ̃ to x/λ is at most the distance ‖x/λ−x/λmax‖2 = r0.

So θ̃ is contained in a ball centered at x/λ with radius r0 =
1/λ − 1/λmax. Now augment this bound with the constraint

θ
Tb∗ ≤ 1. This leads to the dome bound:

G = {θ : ‖θ − x/λ‖2 ≤ r0,b
T
∗ θ ≤ 1}. (6)

With the help of Lemma 1, it is clear that this dome is compli-

ant. We now proceed one step further: an additional codeword

is used to construct the 2-codeword test based on the region

defined by:

C = {θ : ‖θ − x/λ 2 ≤ r0,b
T
1 θ ≤ 1,bT

2 θ ≤ 1}. (7)

Since the bounding region C is more constrained, this 2-

codeword test has the potential to achieve a high rejection

rate, thus reducing the time for solving the lasso problem.

3. METHODOLOGY

In this section, we first state the dome test in a more general

form. Then we introduce an additional codeword and bound

the region so formed by a much smaller sphere compared to

that used in [5]. Strategies to select the codewords for screen-

ing are also discussed.

3.1. The general dome test

Given a sphere centered at q with radius r and a codeword b

on the unit-sphere, a general dome is given by the region:

D = {z : zTb ≤ 1, ‖z− q‖2 ≤ r}. (8)

The corresponding dome test TD(q,r,b) is specified by the fol-

lowing closed form rule.

Lemma 2. TD(q,r,b) rejects codeword bi if

Vl(b
Tbi) < qTbi < Vu(b

Tbi),

where Vl(t) and Vu(t) are defined as:

Vl(t) =

{

−1 + r(ψdt+
√

(1− ψ2
d)(1− t2)) if t ≤ ψd,

−(1− r) if t > ψd;

Vu(t) =

{

(1− r) if t < −ψd,

1 + r(ψdt−
√

(1− ψ2
d)(1− t2)) if t ≥ −ψd;

with ψd = (qTb− 1)/r.

Lemma 2 is a generalization of Theorem 1 in [6]. The

latter is obtained by setting q = x/λ and b = b∗ =
argmaxbi

= xTbi. A proof of Lemma 2 is given in [10].

We observe that a better bounding sphere can be obtained

by supplying a dual solution θ̃0 of another lasso problem with

sparsity parameter λ0 (typically λ0 > λ) for the same x and

B. The point θ̃0 is a feasible point in the target lasso problem

since ∀i θT
0 bi ≤ 1 holds. This can potentially reduce the

sphere radius r0 to ‖x/λmax−θ̃0‖. On the other hand, solving

an additional lasso problem may be time consuming and the

gain may not be able to compensate for the loss in time. This

trade-off will be discussed in §4.

3.2. The 2-codeword test

We now describe the construction of the 2-codeword test.

Consider a bounding sphere centered at q with radius r and

two codewords b1 and b2. Performing a test directly on the

region defined by the sphere and two hyperplanes is complex

(see[11]). An alternative is to first bound the dome formed

by the sphere and codeword b1 within a new sphere. This is

shown as the green sphere in Fig. 1. The parameters (center

qd and radius r) of this new sphere are

qd = q− ψdb1, rd = r
√

1− ψ2
d, (9)
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Fig. 1. The hyperplane of the codeword b1 cuts the sphere

q, producing a new sphere (qd, rd) with reduction factor ψd.

Then the codeword b2 further cuts qd, acquiring the sphere

q∗ identified in Theorem. 1.

with ψd = (qTb1 − 1)/r as defined in Lemma 2. Upon

obtaining the new sphere (qd, rd), we perform a second dome

test TD(qd,rd,b2) using the second codeword b2.

To select b1 and b2, we use a greedy strategy (see [10])

where b1 = argmaxb bTq and b2 = argmaxb bTqd. This

has the advantage of simplicity and efficiency.

Finally, we construct a second new sphere (q∗, r∗) to

bound the region defined by sphere (q, r) and the two code-

words b1, b2 as described in (7). This region is illustrated in

Fig.1 by the region shaded in red and the bounding sphere is

illustrated by the dotted red circle.

We can now state the following result.

Theorem 1. Define the sphere (q∗, r∗) as follows,

q∗ = q− w1b1 + w2b2

r∗ =
√

r2 + 2(w1 + w2)− |q|2 + |q∗|2.
(10)

w1, w2 are constants depending on b1,b2 and q:

w1 = (bT
1 q− bT

1 b2b
T
2 q+ bT

1 b2 − 1)/(1− (bT
1 b2)

2),

w2 = (bT
2 q− bT

1 b2b
T
1 q+ bT

1 b2 − 1)/(1− (bT
1 b2)

2).

Then this sphere bounds the region C defined by (7).

Proof. We are free to select q∗ and r∗ provided we bound the

desired region. First consider the optimization problem:

q∗ = argmin
θ

‖q− θ‖2,θ ∈ C. (11)

Letting x0 = q/‖q‖2 and λ0 = 1/‖q‖2, we can paraphrase

(11) into the dual lasso problem:

q∗ = argmax
θ

1

2
‖x0||

2
2 −

λ20
2
‖θ −

x0

λ0
‖22,

s.t. |θTbi| ≤ 1, i = 1, 2

(12)

The primal form of this problem is the lasso:

min
w′

1

2
‖x0 −Bw′‖22 + λ0‖w

′‖1, B = [b1 b2], (13)

with the primal and dual solutions related by:

x0 = w′
1b1 + w′

2b2 + λθ0. (14)

By changing the sign of bi if necessary, we additionally as-

sume w′
i > 0, i = 1, 2. Then we solve (13) by taking deriva-

tives and setting these to zero. This yields

w′
1 = (bT

1 x− bT
1 b2b

T
2 x+ λ0b

T
1 b2 − λ0)/(1− (bT

1 b2)
2),

w′
2 = (bT

2 x− bT
1 b2b

T
1 x+ λ0b

T
1 b2 − λ0)/(1− (bT

1 b2)
2).

Substituting the expressions for x0 and λ0 and letting w1 =
w′

1/λ0, w2 = w′
2/λ0, yields the first line of (10). Then we

select r∗ by considering the optimization problem:

r2∗ = max
θ

‖θ − q∗‖
2,

where q∗ = q− w1b1 − w2b2,

θ
Tb1 ≤ 1,θTb2 ≤ 1, ‖θ − q‖ ≤ r.

(15)

By unwrapping the square, we have

‖θ − q∗‖
2 = ‖θ‖2 + ‖q∗‖

2 − 2θTq∗

= ‖θ‖2 − 2θT (q− w1b1 − w2b2) + ‖q∗‖
2

= ‖θ − q‖2 + 2w1θ
Tb1 + 2w2θ

Tb2 − ‖q‖2 + ‖q∗‖
2

≤ r2 + 2(w1 + w2)− ‖q‖2 + ‖q∗‖
2.

The last step is valid through enforcing all three constraints

in (15). This yields the second line of (10) and completes the

proof of Theorem 1.

To summarize, we perform two general dome tests

TD(q,r,b1) and TD(qd,rd,b2), proceeding from sphere (q, r)
to a new sphere (q∗, r∗). Hence, in principle, the test can be

applied iteratively.

4. EXPERIMENTS

We look into the percentage of codewords being rejected

and the computational time for performing tests and solving

the reduced lasso problem, on three data sets: RAND (Ran-

domized generated data set with size m=10,000 dictionary,

50 instances for testing, dimensionality p=28), MNIST500

(m=5,000, p=28*28, obtained from the first 500 images from

the MNIST data set [12], with 50 testing images sampled

from the test set) and YALEBXF (Yale B Extended Frontal,

m=2,376,p=192*168, selected from 2,414 pictures of 38 ob-

jects published in [13], by sampling one picture for each

object to be the test set). Instead of controlling λ for spar-

sity, we plot the rejection rate graph against λ/λmax being

the x-axis, where λmax reflects the correlation between the
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Fig. 2. Left column: rejection power varying with desired

sparsity; Right column: speedup (times) compared to no

screening; Rows: data set RAND, MNIST and YALEBXF

dictionary and the testing codeword. We compare the 2-

codeword test with the dome test and the ST1/SAFE test,

where we recursively perform two iterations.

We also look at the performance when supplied with a θ̃0

obtained from the lasso with sparsity λ/λmax+0.2 (1 is used

if exceeding 1). As revealed in Fig. 2, in data set MNIST

and YALEBXF, 2-codeword test outperforms by about 20%

at the same sparsity level comparing to the dome test. With

θ̃0 supplied, the rejection rate is even higher. Involving θ̃0

does not always improve the overall performance. By looking

at λ/λmax = 0.425 (the 4th bar cluster in Speedup column),

the 2-codeword test rejects about 30% and 50% in the first

two data sets where θ̃0 claims advantage in time, much lower

than 85% in YALEBXF where the gain in rejection rate does

not make up the loss in time to acquire θ̃0. When λ/λmax

is small, the speedup tends to 1 due to the low rejection rate,

where acquiring θ̃0 appears to be much more costly, resulting

a speedup less than 1. In all our experiments, we use the

featuresign algorithm from [14] to solve the lasso problems.

4.1. The uncertainty measure

We also investigate how close we are to the optimal screen-

ing test, through the introduction of the uncertainty measure.

Recall the core rejection test in (4), where the optimal dual

solution is required. Here we loosen the criterion a bit and

suppose we have restricted the θ̃ within a certain uncertainty

range. We perform a family of reduced core rejection tests

based on the rules |θ̃Tbi| < 1 − ǫ|θ̃|, where ǫ denotes the

uncertainty ratio over the norm of θ̃, or the uncertainty mea-

sure. The uncertainty measure of a screening test at certain

sparsity level indicates its ability in bounding θ̃. In Fig. 3, an

intersecting point of 2-codeword curve and ǫ = 15% curve

indicates that the 2-codeword test has uncertainty measure of

15% at λ/λmax = 0.65 on the MNIST data set. When θ̃0

is supplied, the ability to locate θ̃ is improved since the start-

ing sphere is much tighter. Notice that the uncertainty mea-

sure is not directly correlated with the rejection rate, making

it more significant. On YALEBXF, the rejection rate 85%

at λ/λmax = 0.45 has uncertainty measure less than 10%,

while its counterpart on MNIST having uncertainty measure

larger than 25%. Intuitively, it suggests that the 2-codeword

test has more room to improve on MNIST than YALEBXF,

which agrees with the fact that when supplied with θ̃0, the 2-

codeword test achieves larger improvement on MNIST com-

pared to YALEBXF. By examining the behavior of the uncer-

tainty measure, we can determine whether to supply a θ̃0, or

other further optimization such as another recursive step.
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Fig. 3. Uncertainty Measure: Error range of approximating θ̃

on MNIST (left) and YALEBXF (right).

5. CONCLUSION

We have introduced the new 2-codeword screening test. By

restricting the bounding region R into a much smaller sphere

compared to the dome in [6], the 2-codeword test achieves

significant improvement on the rejection rate, while the time

complexity remains roughly the same as the dome test. The

performance in terms of rejection rate is improved about

20% above the dome test at the same sparsity level. The

2-codeword test is faster (screen+solve) than previous tests,

suggesting that the time loss in the extra tests is reclaimed by

solving the lasso with a much smaller size dictionary, com-

pleting the task of a screening test in an efficient way. We also

introduce the uncertainty measure to assess the performance

of a screening test, and to decide whether further optimization

is feasible.
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