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ABSTRACT

We consider multi-view classification for the challenging scenario
where, for some views, there are no labeled training examples. Sev-
eral discriminative approaches have been recently proposed for spe-
cial instances of this problem. Here, alternatively, we propose a gen-
erative semi-supervised mixture model across all views which, via
marginalization, flexibly performs exact class inference, given any
subset of available views. The proposed model is an extension of
semi-supervised mixtures to a multi-view setting, as well as a semi-
supervised extension of mixtures of factors analyzers (MFA)[1]. A
novel EM algorithm with a computationally efficient E-step is de-
rived for learning our multi-view model. Specialization of this for-
mulation to the standard MFA problem also gives a reduced com-
plexity E-step, compared to the original EM algorithm proposed for
MFA. Our multi-view method is experimentally demonstrated on
digit recognition using audio and lip video views, achieving com-
petitive results with alternative, discriminative approaches.

Index Terms— multi-view learning, semi-supervised learning,
mixture of factors analyzers, Expectation-Maximization

1. INTRODUCTION

We address learning a classifier to predict the class label C ∈ C =
{1, . . . , Nc} given a multi-view feature vector X = (X(1), . . . , X(Nv))

[2], X(i) the feature (sub)-vector for the ith view. We focus on a
challenging label-deficient scenario dubbed ‘surrogate supervision
multiview learning’ (SSML), wherein there are no labeled training
examples for some views, even though there are unlabeled training
examples with multiple (perhaps all) views present. This scenario
may occur, e.g., when there is a new sensing modality or technology
for an existing application domain. In such cases, a (legacy) labeled
training set may already exist for the standard sensors. Moreover,
one can take joint observation measurements using both the standard
and new sensors, creating multi-view examples. However, ground-
truth labeling these new examples may be both time-consuming
and expensive. This scenario may also occur if, during the labeled
training data acquisition process, some sensors were “censored”
or suffered from equipment glitches. To fix our ideas and, we
emphasize, without any loss of generality, we explicitly consider
the two-view case here: X = {X,Z}, X ∈ Rdx , Z ∈ Rdz ,
and labels C ∈ C. Thus, we assume an unlabeled training
data subset Xu = {(xi, zi), i ∈ Su} and a labeled training
subset Xl = {(xi, ci), i ∈ Sl}, Su = {1, 2, . . . , Nu} and
Sl = {Nu + 1, Nu + 2, . . . , Nu + Nl}. Note that the two sets
do not share any common xi. Several previous works have inves-
tigated this problem. In [3], a two-stage discriminative learning
approach was proposed. Here, a classifier that treats X as the input

feature vector is first designed in a supervised fashion based on Xl.
Next, this classifier is used to make class predictions on Xu, thus
creating surrogate (albeit noisy) labels that are then used to train a
classifier that makes class inferences given Z. In [2], a single joint
optimization technique was proposed, learning linear transforma-
tions that aim both to maximize the canonical correlations between
X and Z and to act as a linear discriminant function, well-separating
the data from the different classes. The learned linear transforma-
tions that map Z to the canonical coordinate space are used as a
linear discriminant function, providing class inferences given Z.
One limitation of both of these methods is that they are tailored for
the two-view learning case. It is unclear whether they are readily
extendible to handle more than two views, let alone many views
(which may occur in some distributed sensor settings).

Here, alternatively, we develop a generative mixture model so-
lution that readily handles multiple (even many) views, and with the
capability to perform exact class inference given any subset of views
observed (i.e., given arbitrary patterns of missing views, both in test-
ing as well as in the training phase). Our model is both a multi-
view extension of the semi-supervised framework from [4] and a
semi-supervised extension of mixture of factors analyzers (MFA),
with the MFA approach used to parameterize the covariance matri-
ces of the multivariate Gaussian mixture components, ensuring well-
conditioned matrices with controllable model complexity, given lim-
ited training data [5].

2. FORMULATION

Suppose samples are generated i.i.d., with (Xi, Zi), i ∈ Su jointly
generated according to a multivariate Gaussian mixture density
(GMM) and with Xi and label Ci, i ∈ Sl conditionally independent
given the mixture component of origin, with Xi generated according
to the same GMM (but marginalized over the missing random vector
Z) and with Ci generated according to a component-conditional
multinomial pmf. We assume the Gaussian components follow
a factor analysis model, i.e., mixture component j is generated
according to [xi, zi]

T = [µT
xj , µ

T
zj ]

T + [AT
xjA

T
zj]

T v + n where
v ∼ N (0, I) and n ∼ N (0, I). The associated incomplete data
likelihood for our model is:

finc(Xl,Xu; θ) = (
∏

i∈Sl

J
∑

j=1

φ(xi;µxj , AxjA
T
xj + σ2I)Bcijαj)·

(
∏

i∈Su

∑

j

φ(xi, zi;µj , AjA
T
j + σ2I)αj). (1)

Here, comprising the parameter set θ: {αj} are the component
masses,

∑

j
αj = 1, αj ≥ 0∀j; B is a matrix whose j-th

row is the component-conditional class probability vector B·j =
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[B1j . . . BCj ] (
∑

c
Bcj = 1 and Bcj ≥ 0); µj = [µT

xj , µ
T
zj ]

T is
component j’s mean vector; Aj = [Axj ;Azj ]

T is a factor loading
matrix [6], used to parameterize the covariance matrix for Gaussian
component j (with the row sub-matrix Axj used to parameterize
the covariance matrix for modeling Xi, i ∈ Sl); and φ(·) is the
multivariate Gaussian density. Also, σ2 will be treated as a hyper-
parameter, chosen to ensure well-conditioned covariance matrices
and held fixed during (EM) learning of all other parameters.

An EM algorithm for (locally) maximizing (1) is developed
as follows. We naturally introduce as hidden data within the EM
framework [7] the mixture component of origin for each sample,
Ji, i = 1, . . . , Nu + Nl. Also, since we are invoking a mix-
ture of factors approach, we also treat as hidden data the factor
vector Vi ∈ Rd. As in the standard MFA approach, we assume
Vi ∼ N (0, Id), with Xi|vi, j ∼ N (µxj + Axjvi, σ

2I), i ∈ Sl

and with [Xi, Zi]
T |vi, j ∼ N (µj + Ajvi, σ

2I), i ∈ Su. These
choices are consistent with the incomplete data likelihood form in
(1). Let V = {Vl,Vu} and J = {Jl,Ju} denote the sets of hidden
data, factor vector set and component of origin, respectively. The
complete data likelihood for the labeled subset is then:

fc(Xl,Vl,Jl|θ) =
∏

i∈Sl

f(xi|vi, ji)f(vi)P (ci|ji)P (ji)

=
∏

i∈Sl

φ(xi;Axjvi + µxj , σ
2I)φ(vi; 0, I)Bcijiαji .

Likewise, the complete data likelihood for the unlabeled data subset
is:

fc(Xu,Vu,Ju|θ) =
∏

i∈Su

φ(
[xi

zi

]

;Ajvi + µj , σ
2I)φ(vi; 0, I)αji .

The EM auxiliary function for the log-likelihood [7] is given by

Q(θ; θn) = EV,J [log f(Xl,Xu,V,J )|{xi, ci}i∈Sl
, {xi, zi}i∈Su

; θn]

∝
∑

i∈Sl

Evi,ji [log φ(xi;Axjvi + µxj , σ
2I)|{xi, ci}i∈S1

; θn]+

∑

i∈Sl

Eji [logBciji + logαji |{xi, ci}i∈S1
; θn]

+
∑

i∈Su

Evi,ji [log φ(
[xi

zi

]

;Ajvi + µj , σ
2I)|{xi, zi}i∈Su

; θn]

+
∑

i∈Su

Eji [log αji |{xi, zi}i∈Su
; θn] + ∆,

where ∆ corresponds to the terms that are constant with respect to θ
such as Evi [log φ(vi; 0, I)]. Further, after applying the iterated ex-
pectation law, Evi,ji [·] = Eji [Evi|ji [·]], and simplifying, we obtain

−Q(θ; θn) ∝

1

2σ2

∑

i∈Sl

∑

j

Evi [‖xi − (Axjvi + µxj)‖
2|xi, ci, j; θ

n]P (j|xi, ci)−

∑

j

∑

c

logBcj

∑

i∈Sl:ci=c

P (j|xi, ci)−
∑

j

logαj

∑

i∈Sl

P (j|xi, ci)+

1

2σ2

∑

i∈Su

∑

j

E[‖xi − (Axjvi + µxj)‖
2|xi, zi, j; θ

n]P (j|xi, zi)+

1

2σ2

∑

i∈Su

∑

j

E[‖zi − (Azjvi + µzj)‖
2|xi, zi, j; θ

n]P (j|xi, zi)−

∑

j

logαj

∑

i∈Su

P (j|xi, zi).

E-step:
The E-step computes the required expected hidden quantities in the
above auxiliary function, given the model parameters held fixed at
θn (superscripting parameters by ‘n’ is omitted for concision), i.e.

P (j|xi, ci) =
φ(xi;µxj , AxjA

T
xj + σ2I)Bcijαj

∑

k
φ(xi;µxk, AxkAT

xk + σ2I)Bcikαk

(2)

P (j|xi, zi) =

φ(
[xi

zi

]

;µj , AjA
T
j + σ2I)αj

∑

k
φ(xi;µk, AkAT

k + σ2I)αk

(3)

E[vi|xi, zi, j] = AT
j (AjA

T
j + σ2I)−1(

[xi

zi

]

− µj) (4)

E[vi|xi, j] = AT
xj(AxjA

T
xj + σ2I)−1(xi − µxj) (5)

E[viv
T
i |xi, zi, j] = I −AT

j (AjA
T
j + σ2I)−1Aj + AT

j · (6)

(AjA
T
j + σ2I)−1(

[xi

zi

]

− µj)(
[xi

zi

]

− µj)
T (AjA

T
j + σ2I)−1Aj

E[viv
T
i |xi, j] = I − AT

xj(AxjA
T
xj + σ2I)−1Axj + AT

xj · (7)

(AxjA
T
xj + σ2I)−1(xi − µxj)(xi − µxj)

T (AxjA
T
xj + σ2I)−1Axj .

We further note that the above E-step computations involving matrix
inversion can be simplified and (for d ≪ dx, dz greatly) reduced
by invoking the matrix inversion lemma, replacing the inversion of a
(dx + dz)× (dx + dz) matrix or a dx × dx matrix with inversion of
a d× d matrix, as follows:

(QjQ
T
j + σ2I)−1 =

1

σ2
I −

1

σ2
Qj(σ

2I +QT
j Qj)

−1QT
j . (8)

This can be applied, respectively, for Qj = Aj in (4) and (6) and
for Qj = Axj in (5) and (7). Furthermore, letting Mj = AT

j Aj and
Mxj = AT

xjAxj, using the result that 1
σ2 (I−Mj(σ

2I+Mj)
−1) =

(σ2I + Mj)
−1, and after several simplifying steps which exploit

the similarity transformation of a matrix, we obtain final, compact
E-step expressions as follows:

E[vi|xi, zi, j] = (σ2I +Mj)
−1AT

j (
[xi

zi

]

− µj) (9)

E[vi|xi, j] = (σ2I +Mj)
−1AT

xj(xi − µxj) (10)

E[viv
T
i |xi, zi, j] = σ2(σ2I +Mj)

−1+ (11)

(σ2I +Mj)
−1AT

j (
[xi

zi

]

− µj)(
[xi

zi

]

− µj)
TAj(σ

2I +Mj)
−1

E[viv
T
i |xi, j] = σ2(σ2I +Mxj)

−1+ (12)

(σ2I +Mxj)
−1AT

xj(xi − µxj)(xi − µxj)
TAxj(σ

2I +Mxj)
−1.

Note that this simplification of the E-step, without any approxima-
tion, is to our knowledge novel, and can also be applied to reduce
complexity of the E-step in the standard, original EM algorithm for-
mulation for mixtures of factors analyzers [6].
M-step:

Solving the minimization of −Q subject to
∑

j
αj = 1 and

∑

c Bcj = 1∀j, yields the following M-step update of θ:

α
(n+1)
j =

∑

i∈Sl
P (j|xi, ci) +

∑

i∈Su
P (j|xi, zi)

Nl +Nu

(13)

B
(n+1)
cj =

∑

i∈Sl:ci=c P (j|xi, ci)
∑

i∈Sl
P (j|xi, ci)

(14)
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[Axj µxj ]
(n+1) = (

∑

i∈Sl

xiE[[vi; 1]|xi, j]
TP (j|xi, ci)+ (15)

∑

i∈Su

xiE[[vi; 1]|xi, zi, j]
TP (j|xi, zi))·

(
∑

i∈Sl

E[[vi; 1][vi; 1]
T |xi, j]P (j|xi, ci)+

∑

i∈Su

E[[vi; 1][vi; 1]
T |xi, zi, j]P (j|xi, zi))

−1

[Azj µzj ]
(n+1) = (

∑

i∈Su

ziE[[vi; 1]|xi, zi, j]
TP (j|xi, zi))· (16)

(
∑

i∈Su

E[[vi; 1][vi; 1]
T |xi, zi, j]P (j|xi, zi))

−1

Missing Views and Missing Labels in the General Multi-View Case:
While the above EM formulation only explicitly considers the

two-view case, it is straightforward to extend our approach for the
case of more than two views, with arbitrary patterns of missing
views, with missing individual features for particular views, as well
as with missing class labels for the views (and individual features)
that are observed for a given training example. This general ap-
plicability of our framework stems from the fact that each row of
the factor loading matrix is used to generate an individual feature.
Thus, the factor loading matrix Aj (and the mean vector µj) can
be arbitrarily row-partitioned, as needed, to model via the GMM
an individual training example with missing views and missing fea-
tures for observed views (i.e., an arbitrary sub-vector of the full
multi-view observation vector).
Class Inferences:

Class decisionmaking is based on the maximum a posteriori
(MAP) rule:

P (c|q) =

∑

j
f(q|j)P (c|j)P (j)
∑

j
f(q|j)P (j)

= (17)

∑

j
φ(q;µqj , AqjA

T
qj + σ2I)Bcjαj

∑

j
φ(q;µqj , AqjAT

qj + σ2I)αj

,

where we may have q = z, q = x, or q = [xz]T , where, for the latter
case, Aqj = Aj , the full factor loading matrix. More generally,
when there are more than two views, by suitable row-partitioning of
the factor loading matrices and mean vectors, as discussed above,
our MFA model can be used to make exact class posterior inferences
given arbitrary patterns of missing views and arbitrary patterns of
missing features for observed individual views.

3. NUMERICAL EVALUATION

In this section, we evaluate our approach and compare with an ap-
proach which should upper-bound its performance, ‘direct super-
vision multiview learning’ (DSML), wherein a mixture model on
(Z,C) is directly learned given a labeled (Zi, Ci) pair training set.

3.1. Test on Synthetic Data

We first consider a 2-class, 3-component, 2-dimensional synthetic
example, shown in Fig. 1, which represents a formidable challenge
for SSML. The ground truth model parameters, based on (1), are:

B =

(

0.9 0.2 0.1
0.1 0.8 0.9

)

, α = [ 1
3
, 1
3
, 1
3
]T , Nl = Nu = 437, Aj

a 2×2 identity matrix, [µx1, µx2, µx3] = [5, 5, 0], [µz1, µz2, µz3] =

−5 0 5 10 15

0

5

10

X

Z

 

 

C=0
C=1

Fig. 1. The synthetic data set, with two one-dimensional (X and Z)
views.

[10, 5, 0], and σ2 = 1. Clearly, based on Fig. 1, SSML cannot per-
form well on this example, since labeled examples are only available
for X , yet with X uninformative for discriminating the two compo-
nents centered at (5,5) and (5, 10). Without labeled examples for Z
drawn from these two components, it is not possible to accurately
estimate the B matrix columns for these two components. While
overall SSML performance is thus expected to be poor, experiments
on this example give some interesting, non-obvious results that are
particularly illustrative of the discrete nature of the performance (ac-
curacy) sensitivity of the model to random parameter initializations
for EM.

We considered a number of experimental trials wherein, to com-
bat sensitivity to parameter initialization, for each trial, the EM al-
gorithm was run starting from 20 random parameter initializations
and the solution with greatest likelihood (1) was chosen. In Fig. 2,
we plot the average accuracy of these best models across trials, as
well as its standard deviation, for both the SSML and DSML scenar-
ios. Each plot shows performance as a function of one of the three
parameters σ2, d, and J , with the other two fixed to the true values.
We also estimated the Bayes correct decision rate as 84.4%, based
on plugging the true parameter values into (17).

There are both expected as well as unexpected observations to
make on the results in Fig. 2. First, as expected, accuracy is greater
under the DSML scenario than under SSML. Second, SSML and
DSML achieve the same accuracy when J = 1. In fact, in this case,
the two (single-component) models make the same predictions for
all data points, assigning all points to the majority class, and thus
achieving accuracy of (0.1 + 0.8 + 0.9)/3 = 0.6. More interest-
ingly, we note that the standard deviation on prediction accuracy for
SSML is much greater than that for DSML when J > 2. The 2-
dimensional synthetic data in Fig. 1 is still largely separable to three
components after projection onto Z. This leads to relatively little
variation in learned models across trials in DSML, and to good accu-
racy. However, the two components with [B11, B21]

T = [0.9, 0.1]T

and [B12, B22]
T = [0.2, 0.8]T are totally overlapped after the syn-

thetic data is projected to X , which makes it hard for EM under the
SSML scenario to distinguish the two overlapped components and
utterly infeasible to accurately estimate the associated true columns
of B. One might, accordingly, imagine that the classification accu-
racy would be uniformly poor, and without large variation, across
the experimental trials. However, looking at Fig. 2, this is not the
case – there is large variation in accuracy with, moreover, quite un-
expectedly good accuracy over some trials. This phenomenon can
be well understood as follows. Note that, even though the infer-
ence rule (17) sums contributions over all components, if the com-
ponents are sufficiently well-separated, then one component (e.g.
j∗) will dominate the sum, with the MAP decision then reducing to
c∗ = argmaxcBcj∗ . In such case, the correct decision will be made
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for an example from class k so long asBkj∗ is the largest probability,
irrespective even of gross inaccuracy in the estimated B matrix. By
the same token, an incorrect decision will be made if Bkj∗ is not the
largest probability. Thus, for the example in Fig. 1, random initial-
ization induces a discrete random effect on classification accuracy,
involving the cases where i) B̂11 > B̂21 and B̂22 > B̂12 (estimates
have same ordering as true values, resulting (surprisingly) in high ac-
curacy); ii) B̂11 < B̂21 and B̂22 < B̂12 (estimates do not have same
ordering as true values for both components, resulting in grossly
poor accuracy); iii) ordering is correct for one component and incor-
rect for the other (resulting in accuracy between these two extremes).
To more quantitatively analyze this phenomenon, we considered the
following idealization of the effects of random initialization on pa-
rameter learning for the example in Fig. 1. Assume that J = 3 and,
for the two overlapped components, that the estimated parameter val-
ues are B11 = p, B12 = q, where p + q = 1.1. Depending on the
learned model’s (p, q) realization, there are three possible prediction
accuracies in SSML: (1) when 0.6 < p < 1 and 0.1 < q < 0.5,
P1 = (0.9 + 0.8 + 0.9)/3 = 0.87; (2) when 0.5 ≤ p ≤ 0.6 and
0.5 ≤ q ≤ 0.6, P2 = (0.9 + 0.2 + 0.9)/3 = 0.67; (3) when
0.1 < p < 0.5 and 0.6 < q < 1, P3 = (0.1 + 0.2 + 0.9)/3 = 0.4.
Assuming p, q ∼ U [0.1, 1], average prediction accuracy is Pavg =
0.87 ∗ 4/9+0.67 ∗ 1/9+0.4 ∗ 4/9 = 0.64 with standard deviation
of 0.217. Note that these two statistics, under this idealized model-
ing, are in reasonable agreement with the results shown in Fig. 2 for
J = 3.
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(a) Accuracies of prediction on Z

versus J when other parameters are
fixed to true values: σ2 = 1, and
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(b) Accuracies of prediction on Z

versus σ2 when other parameters
are fixed to true values: d = 2,
and J = 3.
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Fig. 2. Plot of prediction accuracy versus one of the three parameters
σ2, dA, and J while the other two are fixed to the true values. An
upper bound of the prediction accuracy achieved by the proposed
EM algorithm by calculating Bayes error rate is 84.4%.

3.2. Test on an Audiovisual Task

In this section, we apply the proposed algorithm to a lip-reading task.
In lip-reading, audio and video are considered as separate views. The

data used in our simulation is from [8]. In section 3.2.1, we explain
the experimental setting. The simulation results are given in section
3.2.2.

3.2.1. Experimental Setting

In preprocessing the audiovisual data, we follow the same method as
in [2]. The audio data and the video data extracted from Grid Corpus
are considered as separate views X and Z, respectively. The training
data consists of examples of the form (Xi, Zi) and (Xi, Ci). Note
that in training data Nl = Nu = 370. The testing data consists
of examples of the form (Zi, Ci). The domain of the labels Ci is
C = {0, 1, . . . , 9}, i.e. the ten digits.

J = 40 J = 60 J = 80 J = 100

σ2 = 0.8 55.7%±7.2 54.9%±5.5 53.0%±3.8 50.2%±3.8

σ
2 = 1 49.1%±4.5 57.4%±5.8 53.6%±3.5 53.4%±3.2

σ2 = 1.2 53.4%±6.2 55.3%±4.5 52.5%±1.0 49.1%±5.2

Table 1. Digit prediction accuracies with inferences made solely
using Z as input, for varying σ2 and J , using the proposed model.

J = 40 J = 60 J = 80 J = 100

σ2 = 0.8 70.1%±6.0 69.1%±1.8 73.8%±5.8 70.4%±7.1

σ
2 = 1 68.3%±5.7 68.7%±3.4 72.8%±3.4 69.4%±2.9

σ2 = 1.2 70.8%±2.8 68.5%±4.3 69.4%±5.0 68.7%±2.2

Table 2. Prediction accuracies for inference based on Z with varying
σ2 and J , using mixtures trained based on supervised (Zi, Ci) pairs.

3.2.2. Experimental Results

In table 1, we present prediction accuracies achieved by our pro-
posed method, in making digit predictions using only Z for different
J and σ2 when d = 10 in the audiovisual data. Note that the highest
prediction accuracy was achieved when d = 10.

The results in table 2 show that the highest accuracy achieved
by a mixture learned in a supervised fashion given labeled pairs
(Zi, Ci) is 73.8%, which is comparable to the 72.83% accuracy
achieved by a discriminative model, as reported in [2]. From tables 1
and 2, we observe that the highest prediction accuracy achieved by
our proposed multi-view model, which learns without any labeled
examples involving Z, is 57.4%. As expected, there is reduction in
accuracy, compared with a classifier learned in a standard supervised
fashion. However, 57.4% accuracy still represents a substantial pre-
diction capability on this ten-class problem space.

4. CONCLUSION

This paper proposed a generative, semi-supervised mixtures of fac-
tors analyzers model to solve the surrogate supervision multi-view
learning problem. We developed a novel EM algorithm, with a
reduced-complexity E-step, to estimate the proposed mixtures. The
E-step formulation given here can also be used to reduce complexity
of the E-step in the standard EM algorithm for MFA. We evalu-
ated our method in comparison with a supervised learning approach
(which serves as a performance upper bound target) both on syn-
thetically generated mixtures and on a two-view lip-reading task. In
future we may consider tasks involving many views, for which our
model’s exact inference capability could be advantageous.
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