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ABSTRACT
Recently, methods of screening the lasso problem have been
developed that use the target vector x to quickly identify a
subset of columns of the dictionary that will receive zero
weight in the solution. Current classes of screening tests are
based on bounding the dual lasso solution within a sphere
or the intersection of a sphere and a half space. Stronger
tests are possible but are more complex and incur a higher
computational cost. To investigate this, we determine the op-
timal screening test when the dual lasso solution is bounded
within the intersection of a sphere and two half spaces, and
empirically investigate the trade-off that this test makes be-
tween screening power and computational efficiency. We also
compare its performance both in terms of rejection power and
efficiency to existing test classes. The new test always has
better rejection, and for an interesting range of regularization
parameters, offers better computational efficiency.

Index Terms— sparsity, screening, lasso problem

1. INTRODUCTION

We consider the lasso problem [1]:

min
w∈Rp

1/2‖x−Bw‖22 + λ‖w‖1, (1)

where λ > 0 is a regularization parameter. We call x the tar-
get vector, B ∈ Rn×p the dictionary and its columns code-
words. We will assume that x and the codewords bi are nor-
malized so that ‖x‖2 = 1 and ‖bi‖2 = 1, i = 1, . . . , p.

Problem (1) seeks a sparse representation of x ∈ Rn as
a linear combination of a subset of the codewords in the dic-
tionary B ∈ Rn×p. The `1 regularization encourages sparsity
in a solution w̃ (i.e., many components of w̃ are 0). A so-
lution w̃ of (1) gives a nonlinear representation of x which
can then be used in subsequent stages of data analysis. In a
variety of applications ranging from signal processing to ma-
chine learning, this has proved to be a very effective means of
data representation [2–10]. However, many of today’s large-
scale datasets pose a computational challenge for this method:
the dictionary may be too big to fit into memory at once, it
may take too long to solve (1) using allotted resources, and
one may need to solve a large set of such problems. This
poses a computation bottleneck on the method’s applicability
to large-scale problems.

To address this challenge, a screening test can use x to
first determine a subset of codewords bi with w̃i = 0 [11–18].
Since these codewords will not be used to represent x, this
allows (1) to be solved using a smaller dictionary. This has
two benefits: better computational efficiency and the ability
to solve larger problems with fixed resources.

Screening has its origins in feature selection heuristics
in which a feature (codeword) is selected/rejected based on
an empirical measure of its relevance to x. An important
recent development has given statistical performance guar-
antees for such methods [19]. Others have extended such
tests [20]. A strict form of screening insists that no code-
word is incorrectly rejected. The first line of work in this
direction [11, 12] applies this idea across a broad range of
problems involving sparse regularization. Follow-on work
has focused on screening for variations of the lasso prob-
lem [13–18]. These methods are based on bounding the so-
lution of the dual problem of (1) within a compact region R
and finding µR(bi) = maxθ∈R θTbi. For simple regions
R, µR is readily computed and this yields a screening test
for rejecting unneeded codewords. This has resulted in tests
based on spherical bounds [11,13], the intersection of spheres
and half spaces (domes) [12, 14, 18], elliptical bounds [16]
and novel methods for selecting the parameters for these re-
gions, e.g., [17]. As a result, we now have classes of lasso
screening tests which can be quickly executed, require few
codewords to be in memory at once, and can significantly re-
duce dictionary size and speedup the solution of lasso prob-
lems [14, 15, 17, 18].

Known classes of bounding regions (spheres, domes) are
parameterized, e.g.,spherical bounds by a center q and radius
r. This leads to an associated parameter selection problem:
For a given region class (e.g., spherical) select the region pa-
rameters (e.g., q and r) to best bound the dual solution of (1)
subject to available information and a computation budget.
Better means of selecting parameters yield stronger and more
time efficient tests. Some new ideas directed to this purpose
have recently been proposed in [15–18].

Here we investigate an alternative question: is it worth-
while to develop more complex lasso screening tests that are
structurally distinct from the above known classes. Clearly,
there are classes of tests based on a spherical bound and k
half spaces for k ≥ 0; k = 0 yields the sphere tests and
k = 1 yields the dome tests. As k increases one obtains more
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powerful tests but the tests are also more complex and time
consuming to execute. To investigate this question we exam-
ine the case k = 2. This allows us to determine where things
stand in the trade-off between test power and computational
efficiency, particularly in comparison to the existing classes
of tests k = 0, 1. If k = 2 yields significant payback despite
its additional complexity, it will be a worthwhile addition the
stable of lasso screening tests.

Each of the test classes k = 0, 1, 2, . . . , has an associated
parameter selection problem. Efficient methods for investing
computation to best accomplish this are very important. In
this regard, we expect recent results on this problem for k =
0, 1 [17, 18] will also be applicable when k = 2.

2. PRELIMINARIES

We consider the Lagrangian dual of (1), [11–14, 21–23]:

max
θ

1/2‖x‖22 − λ2
/2‖θ − x

λ
‖22

s.t. |θTbi| ≤ 1 ∀i = 1, 2, . . . , p.
(2)

The solutions w̃ = (w̃1, w̃2, . . . , w̃p)
T and θ̃ of the primal

and dual problems are related through:

x = Bw̃ + λθ̃ & θ̃
T
bi ∈

{
{sign w̃i}, if w̃i 6= 0;

[−1, 1] , if w̃i = 0.
. (3)

Letting B = {±bi}pi=1, allows the constraints in (2) to be
written as ∀b ∈ B : θTb ≤ 1. Let λmax = maxi x

Tbi, and
b∗ ∈ argmaxb∈B xTb. So λmax = xTb∗. Note that θ =
x/λmax is always a feasible point of (2). The dual problem
(2) seeks the closest feasible point to x/λ. If λ > λmax,
then x/λ itself is feasible, making it the optimal solution. In
this case, by (2), w̃i = 0, i = 1, . . . , p. Hence we assume
0 ≤ λ ≤ λmax. By (3), the dual problem provides a sufficient
(but impractical) condition for excluding bi:

θ̃
T
bi < 1⇒ w̃i = 0. (4)

A practical test is obtained as follows. If we know that θ̃ ∈ R
withR compact, then

µR(bi) = maxθ∈R θTbi < 1⇒ w̃i = 0. (5)

Examples of such regions R are given in §3. Selecting R
involves a trade-off between rejection power and computation
efficiency. The tighter the bound, the more codewords it could
reject but the more complex the execution becomes.

3. TWO HYPERPLANE TEST

We now introduce a new lasso screening test: the Two Hyper-
plane Test (THT). This test corresponds to bounding θ̃ in the
intersection of a sphere S(q, r) = {θ : ‖θ − q‖2 ≤ r} and
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Fig. 1. Illustration of the region parameters, i = 1, 2.

two closed half spaces Hi = {θ : nTi θ≤ci}, i = 1, 2, where
ni is the the unit normal to Hi and ci ≥ 0, i = 1, 2. This
region is denoted by D(q, r;n1, c1;n2, c2).

Each hyperplane Pi = {θ : nTi θ = ci} intersects the
sphere forming a dome with base center qi and base radius
ri. See Fig. 1. Denote the ratio between the signed distance
from q to qi and the sphere radius r by ψi. Then:

ψi = (nTi q− ci)/r, qi = q−ψirni, ri = r
√

1− ψ2
i . (6)

To ensure each intersection Hi ∩ S(q, r) is nonempty and
proper, we need −1 ≤ ψi ≤ 1. and to ensure the two half
spaces intersect within the sphere, we need ψ1+ψ2 ≤ nT1 n2.
These conditions ensureD(q, r;n1, c1;n2, c2) is a nonempty,
proper subset of the sphere and of each half space.

To find µD(b) = maxθ∈D θTb we need to solve:

min
θ

(−θTb)

s.t. (θ − q)T (θ − q)− r2 ≤ 0

nT1 θ − c1 ≤ 0

nT2 θ − c2 ≤ 0

(7)

This can be solved in closed form [18] and once µD is known
the THT is readily determined.

Theorem 1. The Two Hyperplane Test (THT) for the region
D(q, r;n1, c1;n2, c2) is given by:

Vl(n
T
1 bi,n

T
2 bi)<qTbi<Vu(n

T
1 bi,n

T
2 bi)⇒ w̃i = 0 (8)

where Vu(t1, t2) =
1− r, if (a);

1 + rt2ψ2 − r
√
1− t22

√
1− ψ2

2, if (b),

1 + rt1ψ1 − r
√
1− t21

√
1− ψ2

1, if (c),
1 + r

1−τ2 [(ψ1 − τψ2)t1 + (ψ2 − τψ1)t2]

− r
1−τ2 f(ψ1, ψ2)f(t1, t2), otherwise,

f(x, y) =
√
1− τ2 + 2τxy − x2 − y2, τ = nT1 n2, condi-

tions (a), (b) and (c) given by:

(a) t1<−ψ1, t2<−ψ2,

(b) t2≥−ψ2,
t1−τt2√

1−t22
< −ψ1+τψ2√

1−ψ2
2

,

(c) t1≥−ψ1,
t2−τt1√

1−t21
< −ψ2+τψ1√

1−ψ2
1

,

3298



and Vl(t1, t2) = −Vu(−t1,−t2).

As a class of tests, THT is guaranteed to be the most pow-
erful among all classes that bound θ̃ within the intersection
of a sphere and up to two half spaces, i.e., a THT test can
eliminate at least as many codewords as any test based on the
same or fewer structural elements. Theorem 1 also shows that
THT uses only the 3p correlations {qTbi,nT1 bi,nT2 bi}

p
i=1.

Since each correlation can be computed in O(n) time, THT
has linear-time complexity O(pn).

To obtain specific instances of THT we must consider
the parameter selection problem. The inequality constraints
in (2) show that the feasible set F of the dual problem is
a nonempty closed polyhedron which depends only on the
codewords in the pool. The point θF = x/λmax is always in
F and can be taken as a default feasible dual solution. The
distance ‖θ̃ − x/λ‖2 can be no greater than ‖θF − x/λ‖2.
This provides a default spherical bound for θ̃, with parame-
ters q = x/λ, r = ‖θF − x/λ‖2. Recent results in [17, 18]
indicate how to refine this initial spherical bound. In addition,
if many problem instances (xj , λj) are solved using a com-
mon dictionary B, the dual solution of a previously solved
instance could be better feasible dual point than the default
indicated above. Next we select two half space bounds. The
inequality constraints in (2) are natural half space bounds on
θ̃. We can select two such half spaces with the objective of
minimizing the area of intersection with the sphere. The in-
tersection of the first half space {θ : n1θ ≤ c1} with the
sphere S(q, r) = {θ : ‖θ − q‖2 ≤ r} forms a dome. Using
(6), the area of the dome is minimized when r1 is minimized,
and hence when nT1 q is maximized. The second hyperplane,
intersects this dome to form the final bounding region. Again,
to minimize the intersection, n2 is chosen from B/n1 to be
most correlated with the center of the first dome q1. We refer
to this form of THT as a Codeword based THT (C-THT):

n1 = argmaxb∈B bTq, c1 = 1; (9)

n2 = argmaxb∈B\{n1} b
Tq1 c2 = 1. (10)

Alternatively, if we have solved instance (x0, λ0) yield-
ing primal and dual solutions w̃0 and θ̃0 (see (3)), then θ̃0

must satisfy the inequalities defining the unique projection of
x0/λ0 onto the closed convex set F [24]: for each θ ∈ F ,

(x0/λ0 − θ̃0)
T (θ − θ̃0) ≤ 0 (11)

Using some algebra and (3), (11) can be written as:

(Bw0)
Tθ ≤ (Bw0)

T θ̃0. (12)

Since 0 ∈ F , the right hand side is nonnegative. Hence (12)
bounds F (thus θ̃) in the half space nT1 θ ≤ c1 with

n1 = Bw0/‖Bw0‖2, c1 = nT1 θ̃0. (13)

One can then select n2 and c2 using the method in (10).

4. EXPERIMENTS

We now empirically examine the performance of the THT,
compare it to existing tests, and examine the trade-off be-
tween improved screening and computational efficiency that
it imposes. We do so using two metrics: rejection power and
speed-up. Rejection power is the percentage of codewords re-
jected by the test. Speed-up is the ratio between the time to
solve the original lasso problem and the sum of the time to
do screening plus solve the reduced lasso problem. Speed-up
measures how much faster the lasso problem can be solved
with the help of screening. Note that it takes into account the
time spent on screening and the cost of solving the screened
problem. Both of the above metrics are important since one
can be traded-off against the other.

We use the following real and synthetic data sets. RAND:
10,000 28-dimensional vectors randomly generated using the
MATLAB rand function); MNIST500: 5000 images of size
n = 28×28 = 784, consisting of random samples of 500 im-
ages of each digit in the MNIST data set; YALEBXF: 2,414
frontal face images of size n = 192 × 168 = 32, 256 of the
38 subjects in the extended Yale B face recognition data set.

For each data set, we screen and solve 64 lasso problems,
each with a distinct, randomly selected target x, and use the
remaining vectors as codewords. We report the average per-
formance with standard error over these instances.

We experimentally compare the following screening tests:
dome test (DT, with default θF and with θF = θ̃) [14]; Code-
word based THT (C-THT, with default θF and with θF = θ̃).
For DT and C-THT, using θF = θ̃ is obviously impractical;
it provides a performance upper bound for a sphere centered
at x/λ.

The results of using THT to screen lasso problems on
these datasets are shown in Fig. 2. As expected, C-THT ex-
hibits superior rejection: it can reject 10%− 30% more code-
words than the equivalent DT. But this comes at a price. In
speedup, C-THT outperforms DT when λ/λmax is small, but
the reverse holds when λ/λmax is large. The simpler test
(DT) is more computationally efficient for larger values of
λ/λmax. To make the comparison fair, both DT and C-THT
utilize ONLY the codewords to construct the hyperplanes in
their respective bounding regions. Of course, the performance
of the tests can always be improved by using better parameter
selection. We only include results using the FeatureSign [25]
lasso solver but experiments indicate consistent speedup re-
sults across the FeatureSign, Grafting [26] and FISTA [27]
lasso solvers.

4.1. Using THT in sequential screening

For many data sets, when λ/λmax is small (< 0.3), exist-
ing screening tests (including C-THT) reject few codewords
and yield modest speedup. Prior work has suggested that a
sequential screening scheme can significantly improve per-
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Fig. 2. Results for three data sets. Left: average rejection percent-
age; Right: average speedup using the FeatureSign solver.

formance in this situation [11, 12, 15, 17, 20]. This can be
done using THT as follows. Denote the value of interest of
the regularization parameter by λt. To solve the target lasso
problem (x, λt), we bring in a sequence {λk}Nk=1 that de-
creases to the given target value λN = λt. Then we screen
(using THT) and solve each of the instances (x, λk) to obtain
the solution at λN = λt. At λk, the known solution (w̃k−1,
θ̃k−1) to the previous instance (x, λk−1) is used to provide
the parameters of a THT test for (x, λk). The parameters of
the spherical bound are selected by existing methods (we used
‖θ̃k−x/λk‖2 ≤ ‖θ̃k−1−x/λk‖2). The first hyperplane con-
straint is obtained via (13) and the second is drawn from the
codewords using (10). Compared with C-THT, this method
further boosts performance significantly, as shown in Fig. 3.
In the figure, the subscript on THT denotes N the number
of λ value’s that are used to solve the target problem. As
can be seen from Fig. 3, for λt/λmax as low as 0.1, where C-
THT barely rejected any codewords, THT10 rejects more than
90% of the codewords while concurrently provide around 5X
speedup. This is a considerable improvement in both code-
word rejection and speedup despite solving a sequence of 10
lasso problems to obtain the desired solution. More details on
this approach, including the design of the sequence {λk} are
given in the companion paper [18].
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Fig. 3. THT used in sequential screening. Left: average rejection
percentage; Right: average speedup using the FeatureSign solver.

5. CONCLUSION

We have investigated the trade-off between rejection power
and computation efficiency of more complex screening tests
by developing and examining a specific new class: the Two
Hyperplane Test. The experimental results show that when
used as a standalone screening test, THT can indeed reject
significantly more codewords than current classes of tests.
Moreover, when the regularization parameter is small, THT
can do so while also providing significant speed-up. Since
this is a range of λ that occurs frequently in applications, this
makes THT quite interesting. These are positive and encour-
aging results. At the other extreme, when λ/λmax is moderate
to large, the experimental results show that one is probably
better off using a simpler class of screening tests such as the
dome tests. We also examined the use of THT as a building
block in sequential screening schemes. Our experimental re-
sults in this application indicated that THT can significantly
boost screening performance for very small values of λ.

One might ask why not use 3 hyperplanes or even 4? This
will clearly yield better codeword rejection. However, it will
do so at the expense of greater complexity and greater execu-
tion time. The results for THT used in a sequential screening
scheme suggest that such additional complexity may not be
warranted at this time.
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