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ABSTRACT
Typical algorithms for dictionary learning iteratively perform

two steps: sparse approximation and dictionary update. This

paper focuses on the latter. While various algorithms have

been proposed for dictionary update, the global optimality is

generally not guaranteed. Interestingly, the main reason for

an optimization procedure not converging to a global opti-

mum is not local minima or saddle points but singular points

where the objective function is not continuous. To address the

singularity issue, we propose the so called smoothed SimCO,

where the original objective function is replaced with a con-

tinuous counterpart. It can be proved that in the limit case,

the new objective function is the best possible lower semi-

continuous approximation of the original one. A Newton CG

method is implemented to solve the corresponding optimiza-

tion problem. Simulations demonstrate the proposed method

significantly improves the performance.

1. INTRODUCTION

A good dictionary plays a decisive role in sparse signal repre-

sentation applications (e.g. signal denoising, image inpaint-

ing and data classification). However, in many applications,

pre-defined dictionaries may not be available, for example,

blind source separation and compressed sensing with impre-

cise hardware calibration. For those applications, one needs

to learn the dictionary from the available training data. Dic-

tionary learning is the technique to find an over-complete dic-

tionary that accurately represent the signals with sparse coef-

ficients.

Dictionary learning algorithms typically involve itera-

tively solving two problems: sparse coding and dictionary

update. Sparse coding aims at finding an optimal sparse ap-

proximation of the training samples with a given dictionary.

Algorithms including l1-minimization [1] or greedy algo-

rithms (e.g. OMP [2] and SP [3]) are often used to solve this

problem.

The goal of dictionary update is to refine the dictionary

for a given sparsity pattern. In MOD designed by Engan, et

al. [4], during each iteration the dictionary is updated by fix-

ing the sparse coefficients and solving a least squares prob-

lem. In 2006, Aaron, et al. generalized the K-means method

and developed K-SVD algorithm [5]. The K-SVD structure is

considered where each time a single codeword is updated with

the corresponding sparse coefficients. More recently, Dai, et

al. designed SimCO algorithm [6] where dictionary update is

formulated as an optimization problem on manifolds. SimCO

allows a simultaneous update of an arbitrary subset of code-

words and the corresponding coefficients. It has been shown

in [6] that MOD and K-SVD can be viewed as special cases of

SimCO. See [7, 8] and references therein for other techniques.

Unfortunately, all the above dictionary update algorithms

do not guarantee the global optimality. The observation in [6]

says that the main reason for benchmark algorithms failing to

converge to a global minimizer is the singularity issue. That

is, the objective function is not continuous and an optimiza-

tion procedure may get trapped in the neighborhood of singu-

lar points. To address this issue, the authors in [6] proposed

regularized SimCO, where a regularization term is added to

the objective function.

In this paper, we propose a smoothing technique for

SimCO, termed smoothed SimCO. The major contributions

of this paper are:

• A continuous objective function is proposed to replace

the original one. This new objective function results

in significant improvement according to the numerical

tests.

• We prove that the proposed objective function, in the

limit, is the best possible lower semi-continuous ap-

proximation of the original one. The lower semi-

continuity guarantees that the solution set is closed,

which is required for a convergence of any optimiza-

tion procedure. By contrast, the regularized objective

function proposed in [6] does not have this property.

• A Newton CG method is designed to minimize the pro-

posed objective function. It turns out that the corre-

sponding computations are highly non-trivial. In this

paper, key formulae for implementing the Newton CG

method are derived. Numerical tests verify that our im-

plementation achieves a good balance between conver-

gence rate and computational complexity.
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The rest of this paper will be organized as following: an

introduction of the SimCO algorithm is given in Section 2.

Then in Section 3 we present the smoothed objective func-

tion and give a discussion on the selection of the parameters.

An efficiency of the algorithm implementation is discussed in

Section 4. Numerical comparison between our proposed al-

gorithm and the mainstream algorithms are shown in Section

5. Finally we conclude our work in Section 6.

2. PRELIMINARIES: THE SIMCO FRAMEWORK

The SimCO framework is designed for the dictionary update

stage and can be briefly summarized as follows. Consider the

problem of updating a dictionary D ∈ R
m×d from the train-

ing samples Y ∈ R
m×n. Let Ω be the index set of nonzero

coefficients, i.e., Ω = {(i, j) : Xi,j �= 0}. The SimCO

framework assumes that the sparsity pattern Ω is fixed during

the update process. Define the feasible set for sparse coef-

ficients X (Ω) =
{
X ∈ R

d×n : Xi,j = 0, ∀ (i, j) /∈ Ω
}
.

Follow the convention [6] in defining the feasible set for the

dictionary:

D =
{
D ∈ R

m×d : ‖D:,k‖2 = 1, ∀k ∈ [d]
}
,

where [d] = {1, 2, . . . , d}. The SimCO framework formu-

lates the dictionary update problem as

min
D∈D

f (D) = min
D∈D

min
X∈X (Ω)

‖Y −DX‖2F︸ ︷︷ ︸
f(D)

,

where the inner optimization problem has a closed-form so-

lution X∗ given by

X∗
i,j = 0, ∀ (i, j) /∈ Ω, X∗

Ω(:,j),j = D†
:,Ω(:,j)Y:,j ,

where Ω (:, j) = {i : (i, j) ∈ Ω} is the index set of nonzero

elements in X:,j , and D†
:,Ω(:,j) is the pseudo-inverse of matrix

D:,Ω(:,j). It is worth to mention that the objective function

f (D) can be decomposed as a summation of atomic func-

tions:

f (D) =

n∑
i=1

min
X:,i∈X (Ω(:,i))

‖Y:,i −DX:,i‖2F︸ ︷︷ ︸
fi(D)

,

where X (Ω (:, i)) is defined as the set of all vectors satisfying

the given sparsity pattern.

As discussed in [6], the objective function f (D) is not

continuous. The singularity of f (D) is the main reason be-

hind the failure of a dictionary update algorithm1: it has been

shown that when the benchmark algorithms, including MOD,

K-SVD and SimCO, fail, they typically get trapped in the

1The singularity issue appears even when the true sparsity pattern is

known [6]. This suggests that it is inherent in the dictionary update stage.

neighborhood of singular points. For Regularized SimCO [6],

an l2 penalty term is added to the objective function to address

the discontinuity issue. However our analysis shows that lo-

cal minimum may be generated by regularization. (see the

journal version of this paper [9] for more details).

3. SMOOTHED OBJECTIVE FUNCTION

To address the singularity issue, we propose a smoothed ob-

jective function in this section. Different from [6] where

a regularization term is added, we introduce multiplicative

terms. Our approach is based on the identification of when

the objective function f (D) becomes discontinuous.

Definition 1. A dictionary D ∈ R
m×d is singular under a

given sparse pattern Ω if there exists an i ∈ [n] such that

D:,Ω(:,i) is column rank deficient. Or equivalently, the mini-

mum singular value of D:,Ω(:,i) is zero.

For compositional convenience, denote the sub-dictionary

D:,Ω(:,i) by Di. The multiplicative terms, referred to as mod-
ulation functions henceforth, are designed to “filter” out the

singular points. For given constants 0 ≤ δ1 ≤ δ2, we define a

modulation function2 gδ (λ) as:

gδ (λ) =

⎧⎪⎨
⎪⎩
0 if λ ≤ δ1,

6a5 (λ)− 15a4 (λ) + 10a3 (λ) if δ1 < λ < δ2,

1 if δ2 ≤ λ,

where a (λ) = (λ− δ1) / (δ2 − δ1). The constant δ2 − δ1
defines how fast gδ(λ) changes from 0 to 1 as λ increases.

This function is designed such that it is the simplest piece-

wise polynomial that is second order differentiable.

With the definition of the modulation function, we pro-

pose to replace the original objective function with the fol-

lowing one

f̃ (D) =
∑
i

fi (D) · gδi (λmin (Di))︸ ︷︷ ︸
f̃i(D) or f̃i(Di)

.

Here the notation λmin (D:,i) represents for the minimum sin-

gular value of D:,i, and the subscript δi �
(
δ
(i)
1 , δ

(i)
2

)
em-

phasizes that the thresholds 0 < δ
(i)
1 < δ

(i)
2 are different for

different i ∈ [n]. (The choices of δi are specified later.) It is

also worth to note that each atomic function f̃i is a function of

the sub-dictionary Di, and hence a function the overall dic-

tionary Di. The dictionary update problem is then formulated

as minD∈D f̃ (D) .
The new objective function f̃ (D) has several properties

especially convenient for the problem at hand.

2In practice, we only consider two cases: 0 < δ1 < δ2 or δ1 = δ2 = 0.

The presented definition works for 0 < δ1 < δ2. When 0 = δ1 = δ2,

gδ (λ) = 1 for λ > 0 and gδ (λ) = 0 for λ = 0.
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Theorem 1.

1. When 0 < δ
(i)
1 < δ

(i)
2 , ∀i, f̃(D) is continuous.

2. Consider the limit case where δ
(i)
1 , δ

(i)
2 → 0 with 0 <

δ
(i)
1 < δ

(i)
2 , ∀i. The following hold.

(a) f̃(D) and f(D) differ only at the singular points.

(b) f̃(D) is the best possible lower semi-continuous

approximation of f(D).

Due to the space constraint, the proof is omitted here and

will be presented in the journal version of this paper [9]. The

properties for the limit case distinguish the proposed f̃ and

the one in [6].

The effect of adding the modulation functions, intuitively

speaking, is to open “tunnels” for the optimization process to

pass through. The smaller δi’s are, the better the function f̃
approximates the function f , but the narrower the tunnels are,

and the slower the convergence rate is. The next subsection

discusses a particular way to choose the parameters.

3.1. Choices of the Thresholds

We use random matrix theory to choose δi’s.

We first argue that for different i, δi should be different.

Consider the case where m = 100, |Ω (:, 1)| = 2 � m
and |Ω (:, 2)| = m. Suppose that the dictionary D is ran-

domly generated from the uniform distribution on D.3 It is

clear that with high probability λmin (D1) centers around 1

but λmin (D2) is close to zero. Intuitively, the thresholds δi’s
should be chosen such that the modulation functions take ef-

fect (i.e., gδi
< 1) with small but positive probability.

Generally speaking, it is difficult to quantify the probabil-

ity of λmin (Di)’s. Nevertheless, when m and si := |Ω (:, i)|
approaches infinity with a constant ratio, the distribution of

λmin will converge a distribution only dependent of the ratio

si/m. In particular,

Proposition 1. For any given m and si such that si ≤ m,
define Dm,si as the set containing all the matrices with unit
norm columns. Randomly generate Di from the uniform dis-
tribution on Dm,si . Then as m, si → ∞ simultaneously with
si/m → ci < 1, the minimum singular values λmin (Di)
converges to τi � 1−√

ci in probability.

The proof will be detailed in the journal version of this

paper [9]. Though the results are asymptotic, they provide a

good approximation for finite m and si. In our implementa-

tion, we set δ
(i)
2 = ατi where α ∈ (0, 1) is a constant inde-

pendent of i, and δ
(i)
1 = δ

(i)
2 /200.

3The uniform distribution is well defined as D is a compact manifold.

4. ALGORITHM IMPLEMENTATION

In this section, we present a Newton CG implementation to

minimize the objective function f̃ (D). Most optimization

methods are based on the so called line search strategy. The

dictionaries at the beginning and the end of the k-th iteration,

denoted by D(k) and D(k+1) respectively, can be related by

D(k+1) = D(k) + α(k)η(k) where α(k) is the appropriately

chosen step size and ηk is the search direction. The step size

α(k) can be determined by using criteria presented in [10, 11].

The search direction η(k) plays the key role in determining

the convergence rate. Generally speaking, a Newton direction

is preferred (compared with the gradient descent direction)

[11]. In a standard Newton method, the computation of the

Newton direction requires the Hessian of the objective func-

tion. Note that in the problem at hand, the variable D has size

m×d and hence the corresponding Hessian has size md×md.

To compute the Hessian explicitly, it requires large computa-

tional resource as well as extra-ordinary storage resource. By

contrast, Newton CG provides a means to compute the New-

ton direction without explicitly computing the Hessian.

More specifically, the Newton CG method starts with the

gradient descent direction η0 and iteratively refines it towards

the Newton direction. The detailed steps in finding a good

search direction are given in Algorithm 1. Denote the gradi-

ent of f̃ (D) as ∇f̃ (D). Denote ∇η

(
∇f̃ (D)

)
∈ R

m×d

as the directional derivative of ∇f̃ (D). In each iteration

of the proposed algorithm, instead of computing the Hes-

sian ∇2f̃ ∈ R
md×md explicitly, one only needs to compute

∇η

(
∇f̃

)
. The required computational and storage resources

are therefore much less than working with the Hessian di-

rectly. Due to the space constraint, we postpone the compu-

tation details of ∇f̃ and ∇η

(
∇f̃

)
to the journal version of

this paper [9].

5. EMPIRICAL TESTS

The settings for the numerical tests are as follows. The train-

ing samples are generated according to Y = DtrueXtrue +
W where W ∈ R

m×n are Gaussian noise (W = 0 for the

noiseless case). The dictionary Dtrue is randomly generated

from the uniform distribution on D. Regarding the sparse co-

efficients, we assume that each column of Xtrue contains ex-

actly s many non-zero elements of which the locations are

randomly generated from the corresponding uniform distribu-

tion. The nonzero elements of Xtrue are randomly generated

from the standard Gaussian distribution. To separate the effect

of sparse coding, we also assume that the sparse coding stage

is perfect, i.e., the true sparsity pattern Ωtrue is available. The

more realistic scenario where sparse coding is combined with

dictionary update is tested in the journal version [9] but here.

Both noiseless and noisy case are considered in the

tests. Let D̂ and X̂ be the learned dictionary and the
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Fig. 4.1: The performance comparison.

Algorithm 1 The Newton CG algorithm: find the search di-

rection.
Input: D; Output: η.

Define: P (η:,i) = (I −D:,iD
T
:,i)η:,i.

For k = 0, 1, 2, ...

Define tolerance εk = min

(
0.5,

√∥∥∥∇f̃
∥∥∥
)∥∥∥∇f̃

∥∥∥.

Set z0 = 0, r0 = ∇f̃ , d0 = −r0 = −∇f̃ .

For j = 0, 1, 2, ...

Set Hj = ∇dj

(
∇f̃

)
.

∀i, let (Hj):,i = P
(
(Hj):,i

)
.

If tr
(
dT
j Hj

)
� 0

If j = 0
returnη = −∇f̃ .

else
returnη = zj .

Set αj = tr
(
rTj rj

)
/tr

(
dT
j Hj

)
.

Set rj+1 = rj + αjHj .

If ‖rj+1‖ < εk
returnη = zj+1.

Set βj+1 = tr
(
rTj+1rj+1

)
/tr

(
rTj rj

)
.

Set dj+1 = −rj+1 + βj+1dj .

end
∀i, let η:,i = P (η:,i).

corresponding sparse coefficients, respectively. The nor-

malized learning error is defined as
∥∥∥Y − D̂X̂

∥∥∥2
F
/n. The

criteria for success learning are designed for both cases us-

ing the normalized learning error: in the noiseless case,

a success is claimed when
∥∥∥Y − D̂X̂

∥∥∥2
F
/n ≤ εe ‖Y ‖2F

where the constant εe is ideally zero but set to 10−6 in

practice; for the noisy case, the criterion for a successful

learning is given by
∥∥∥Y − D̂X̂

∥∥∥2
F
/n ≤ εn ‖Y ‖2F where

εn := ‖W ‖2F /n/ ‖DtrueXtrue‖2F .

In the tests, four algorithms, namely MOD, K-SVD, reg-

ularized SimCO, and smoothed SimCO, are compared. For

each of these algorithms, the maximum number of iterations

is set to 1000. For regularized SimCO, the regularization con-

stant is initially set as μ = 0.1 and then reduced to μ/10 after

every 100 iterations. In smoothed SimCO, the thresholds δi’s
are set to (0.001, 0.2) for the first 500 iterations and then to

(0, 0) for the rest 500 iterations. (Note that δi = δj due to the

simulation setting.)

The simulation results are presented in Figure 4.1, where

the first two sub-figures compare the normalized distortion

and the last one focuses on the success rate. The advantage

of the proposed smoothed SimCO is clear for both noiseless

and noisy cases. In terms of success rate, smoothed SimCO

reaches 100% success rate when the number of training sam-

ples n > 60 while MOD and K-SVD could not achieve 100%

success rate even when n ≥ 84. It is also interesting to ob-

serve the dip in the success rate when n is in the middle-range

(Figure 4.1c). This is expected. On one hand, the success

rate should increase when the number of training samples be-

comes larger. On the other hand, when the number of training

samples is extremely low, for example, n = 1, the learning

problem becomes trivial. Hence, the most difficult case is

when n is in the middle-range.

6. CONCLUSION

We presented a new method for dictionary learning based on

the SimCO framework to address the singularity problem oc-

curred in the dictionary update stage. We rigorously analyzed

the proposed objective function and proved certain good prop-

erties. A Newton CG method is implemented to achieve a

good balance between convergence rate and computational

complexity. Numerical results of the proposed algorithms

demonstrate the significant performance improvement.
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