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ABSTRACT

Many practical applications require solving an optimization
over large and high-dimensional data sets, which makes these
problems hard to solve and prohibitively time consuming. In
this paper, we propose a parallel distributed algorithm that
uses an adaptive regularizer (PDAR) to solve a joint optimiza-
tion problem with separable constraints. The regularizer is
adaptive and depends on the step size between iterations and
the iteration number. We show theoretical convergence of our
algorithm to an optimal solution, and use a multi-agent three-
bin resource allocation example to illustrate the effectiveness
of the proposed algorithm. Numerical simulations show that
our algorithm converges to the same optimal solution as other
distributed methods, with significantly reduced computational
time.

1. INTRODUCTION
With the sensor and the storage technologies becoming in-
creasingly cheaper, modern applications are seeing a sharp
increase in big data. The explosion of such high-dimensional
and complex data sets makes optimization problems ex-
tremely hard and prohibitively time consuming [1]. Parallel
computing has received a significant attention lately as an ef-
fective tool to achieve the high throughput processing speeds
required for processing big data sets. Thus, there has a been
a paradigm shift from aggregating multi-core processors to
utilizing them efficiently [2].

Although distributed optimization has been an increas-
ingly important topic, it has not received sufficient attention
since the seminal work by Bertsekas and Tsitsiklis until re-
cently. In the 1980’s, Bertsekas and Tsitsiklis extensively
studied decentralized detection and consensus problems [3]
and developed algorithms such as parallel coordinate descent
[4] and the block coordinate descent (BCD) (also called the
block Jacobi) [3, 5]. In 1994, Ferris et. al. proposed paral-
lel variable distribution (PVD) [6] that alternates between a
parallelization and a synchronization step. In the paralleliza-
tion step, several sub-optimal points are found using parallel
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optimizations. Then, in the synchronization step, the optimal
point is computed by taking an optimal weighted average of
the points found in the parallel step. Although PVD claims
to achieve better convergence rate than BCD, the complexity
of solving optimization in both the steps make it impractical
for high dimensional problems. There are other efficient dis-
tributive methods in literature, such as the shooting [7], the
shotgun [2], and the alternating direction method of multi-
pliers (ADMM) [1], however, these methods apply to only a
specific type of optimization problems: `1-regularization for
shooting and shotgun, and linear constraints for ADMM.

In this paper, we propose a fully distributed parallel
method to solve optimization problems over high-dimensional
data sets, which we call the parallel distributive adaptive reg-
ularization (PDAR). Our method can be applied to a wide
variety of nonlinear problems where the constraints are block
separable. The assumption of block separable constraints
is valid for many practical problems, such as, multi-agent
resource allocation where resources are being distributed
amongst several agents that influence the choice of allo-
cation. In order to coordinate among the subproblems we
introduce an adaptive regularizer term that penalizes the large
changes in successive iterations. Our method can be seen as
an extension of the classical proximal point method (PPM)
[8] with two novel advances. First, our motivation for using
the PPM framework is very different than the original. We
use PPM as a means to coordinate among the parallel sub-
problems and not for handling non differentiability. Second,
we enforce coordination by using adaptive regularizers that
vary across different subproblems.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem; in Section 3 we propose our par-
allel distributive algorithm and show convergence to an opti-
mum solution; in Section 4 we provide numerical simulations,
and we conclude the paper in Section 5.

2. PROBLEM FORMULATION

Consider an optimization problem given as:

minimize f(x) (1)

subject to x ∈ X , (2)
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where the objective is to find the optimal vector x∗ that min-
imizes the function f(x) ∈ R, with x ∈ Rd. The problem
is often very complex, nonlinear, and high dimensional, and
solving it is prohibitively time consuming. We assume that
the constraint x ∈ X can be separated into several blocks,
such that

x = [x1,x2, . . . ,xi, . . . ,xN ] where, xi ∈ Xi, (3)

with xi ∈ Rni and
∑N

i=1
ni = d. Once the problem is sepa-

rated into blocks, distributed iterative approaches (such as the
ones mentioned in the Introduction section) can be applied.
However, these methods are time consuming when the sub-
problems are themselves complex.

3. DISTRIBUTED OPTIMIZATION VIA ADAPTIVE
REGULARIZATION

In this section, we describe our distributed optimization
framework with adaptive regularization. We solve the op-
timization problem given by Eq. (1) in a parallel and iterative
manner. Let k denote the iteration index and x̂

k = (x̂k
i , x̂

k
−i),

with x̂
k
−i =

[

x̂
k
1 , . . . , x̂

k
i−1, x̂

k
i+1, . . . , x̂

k
N

]

denote the solu-

tion to the optimization problem in the kth iteration. In order
to obtain a solution in a distributed manner, we define a set of
N augmented objective functions at each iteration k as 1

Lk
i (xi; x̂

k−1) = f(xi, x̂
k−1

−i ) + λk
i (h

k−1

i )‖xi − x̂
k−1

i ‖2, (4)

where hk−1

i = x̂
k−1

i − x̂
k−2

i is the step taken by the ith

block in the (k − 1)th iteration, and λk
i (h

k−1

i ) is an adap-
tive regularization coefficient which depends on both the in-
dices i and k. We will describe the form of this regulariza-
tion coefficient shortly. After defining the objective functions
Lk
i (

.), i = 1, . . . , N , we solve N optimization problems in a
parallel fashion:

x̂
k
1 = arg min

x1∈X1

Lk
i (x1; x̂

k−1),

x̂
k
2 = arg min

x2∈X2

Lk
i (x2; x̂

k−1),

...

x̂
k
N = arg min

xN∈XN

Lk
i (xN ; x̂k−1). (5)

This optimization framework is in the form of a decomposition-
coordination procedure [1], where N agents are trying to
minimize their own augmented objective functions, and the
new joint vector x̂k is obtained by simply aggregating the N

blocks. If we consider a single objective function Lk
i (x

k
i ) at a

single iteration k, the minimization of the objective functions
is only with respect to he variables of the ith block. However,

1We use a semicolon notation in Eq. (4) to clarify that only the variables
on the left of the semicolon are allowed to change.

Algorithm: PDAR
k = 1; % Iteration counter
Initialize x

0 and λ
0

i ∀ i

do
parfor i in 1 : N

x̂
k

i = arg min
xi∈Xi

L
k

i (xi; x̂
k−1)

Set hk

i = x̂
k

i − x̂
k−1

i

Update λ
k

i

end parfor
k := k + 1

until ‖f(xk) − f(xk−1)‖ ≤ δ

Table 1: Algorithm for Parallel Distributed Optimization

since the objective function depends also on variables from
other blocks, a change in them will cause a change to the
objective function, namely Lk+1

i (xk
i ) 6= Lk

i (x
k
i ).

Next, we discuss the choice of the regularization coeffi-
cient λk

i (h
k−1

i ). We chose λk
i (h

k−1

i ) to be of the form:

λk
i (h

k−1

i ) =

{

max(φ(‖hk−1

i ‖), β) if k < K

αk otherwise,
(6)

where K is a threshold on the iteration index, α > 0, and
β > 0 are parameters chosen depending on the problem.
Intuitively, the threshold K divides each optimization prob-
lem into two phases. The goal of the first phase is to coor-
dinate the parallel optimization. In this phase, each of the
agents change their solution in response to the solutions of
other agents. This alternating behavior can be enforced by
choosing the function φ(‖hk−1

i ‖) to be a nondecreasing with
respect to ‖hk−1

i ‖. This choice will increase the value of reg-
ularization coefficient, λk

i (h
k−1

i ) as ‖hk−1

i ‖ increases. The
increase in λk

i (h
k−1

i ) will in turn enforce a smaller stepsize
on the agents that had large change in the previous iteration,
to allow other agents to react in the current iteration. The
goal of the second phase is to fine tune the solution and to
enable it to reach a local optimum. In this paper we choose
φ(‖hk−1

i ‖) = N2‖hk−1

i ‖. The algorithm is summarized in
Table 1.

3.1. Discussion on the Convergence

In this section, we show that the algorithm described in the
previous subsection converges to an optimum solution. As-
sume that the function f(x) is convex. Since the augmented
function Lk

i (
.), i = 1, . . . , N is the sum of two convex func-

tions, it is convex. We then have

x̂
k
i = arg min

xi∈Xi

Lk
i (xi; x̂

k−1). (7)

3288



Since x̂k
i is a minimizer of Lk

i (xi; x̂
k−1), we have by the first

order necessary conditions for local optimum that

∇iL
k
i (xi; x̂

k−1)

∣
∣
∣
∣
xi=x̂k

i

= 0,

∇if(x̂
k
i , x̂

k−1

−i ) + 2λk
i (h

k−1

i ) (x̂k
i − x̂

k−1

i )
︸ ︷︷ ︸

hk

i

= 0,

⇒ ∇if(x̂
k
i , x̂

k−1

−i ) = −2λk
i (h

k−1

i )hk
i ,

⇒ hk
i =

−∇if(x̂
k
i , x̂

k−1

−i )

2λk
i (h

k−1

i )
, (8)

where the operator ∇i is a gradient operator with respect to
xi. For k > K we have λk

i (h
k−1

i ) = αk, and therefore Eq.
(8) simplifies as

hk
i =

1

2αk

(

−∇if(x̂
k
i , x̂

k−1

−i )
)

︸ ︷︷ ︸

dk

i

, (9)

where dk
i is the negative gradient direction of the ith agent.

By concatenating all the directions into a single vector dk =
[dk

1 ,d
k
2 , . . . ,d

k
N ], we get the next iterate xk as

x̂
k = x̂

k−1 + hk, (10)

where hk = d
k

2αk
. We prove the convergence properties of the

algorithm using the following two prepositions.

Proposition 1: For the sequence of non-stationary iterates x̂k

obtained from the PDAR algorithm, ∇f(x̂k−1)′dk < 0. 2

Proof: From the definition of dk
i , we have

dk
i = −∇if(x̂

k
i , x̂

k−1

−i ). (11)

Therefore,

∇f(x̂k−1)′dk =

N∑

i=1

−∇if(x̂
k−1)∇if(x̂

k
i , x̂

k−1

−i ). (12)

Since x̂
k
i is a result of minimizing Lk

i (xi; x̂
k−1), the corre-

sponding step h
k
i must be in a descending direction. Thus

∇iL
k
i (x̂

k−1)′hk
i = ∇if(x̂

k−1)′hk
i ≤ 0, ∀ i (13)

However, there must exist at least one block where the
strict inequality ∇if(x

k−1

i )′hk
i < 0 holds. We prove this

by contradiction. Assume that ∀i, ∇if(x
k−1

i )′hk
i = 0.

If hk
i = 0, ∀i, then x̂

k is a stationary point which contra-
dicts the assumption of convergence to a nonstationary point.
Hence there exists some i, for which hk

i 6= 0. Now, since

2For brevity, if all the blocks in the function are from the same iteration,
we will simplify the notation, i.e., f(x̂k−1

i
, x̂k−1

−i
) = f(x̂k−1)

Lk
i (x

k; x̂k−1) is a convex function, it must lie above all of its
tangents, i.e.,

Lk
i (x̂

k
i ; x̂

k−1

−i ) ≥ Lk
i (x̂

k−1) +∇iL
k
i (x̂

k−1)′hk
i . (14)

Since ∇iL
k
i (x̂

k−1)′hk
i = ∇if(x̂

k−1)′hk
i = 0, we have

from Eq. (14), that Lk
i (x̂

k) ≥ Lk
i (x̂

k−1). This is a contradic-
tion, since every iterate should reduce the objective function
corresponding to the block. Intuitively, this inequality implies
that if the step size is perpendicular to the gradient of the ob-
jective function, then such steps do not decrease the value of
the objective function. Hence there exists at least one block
that satisfies inequality ∇if(x

k−1

i )′hk
i < 0. Finally, since at

least one block satisfies the strict inequality, their summation
satisfies strict inequality:

N∑

i=1

∇if(x̂
k−1

i )′hk
i < 0,

⇒

N∑

i=1

∇if(x̂
k−1)′∇if(x̂

k
i , x̂

k−1

−i ) < 0,

⇒ ∇f(x̂k−1)′dk < 0.

Proposition 2: Assume that f gradients to be uniformly con-
tinuous in the `2 norm, and that its gradients are bounded.
The sequence x̂k converges to an optimal solution.
Proof: Formally, we need to show that for any subsequence
{x̂k} that converges to a nonstationary point, the correspond-
ing subsequence {dk} is bounded and satisfies [8]:

lim
k→∞

supk∈K∇f(x̂k−1)′d(x̂k) < 0, (15)

where d(x̂k) = −
∑N

i=1
∇if(x̂

k
i , x̂

k−1

−i ). Let ε > 0, and
{xk}k∈K be an arbitrary sequence of nonstationary points
such that

lim
k→∞

supk∈Kx̂
k = x̄,

where ∇f(x̄) 6= 0. Then ∀k ∈ K the gradients are not
equal to zero, ∇f(x̂k) 6= 0, since the sequence has non-
stationary points. Using Proposition 1, we have that ∀k ∈
K, ∇f(x̂k−1)′d(xk) < 0, and specifically ∇f(x̄)′d(x̄) =
D1 < 0.

By the continuity assumption of the gradients, there ∃ δ >

0 such that ‖∇f(y)′d(y)−∇f(x̄)′d(x̄)‖ < ε, ∀ ‖y− x̄‖ <

δ. Since xk → x̄, ∃ N ∈ N such that ∀k > N, ‖xk − x̄‖ <

δ, and thus

‖∇f(xk−1)′d(xk)−∇f(x̄)′d(x̄)‖ < ε.

This implies that ∇f(xk−1)′d(xk) < D1 + ε. As ε > 0
is arbitrary, limk→∞ supk∈K∇f(xk−1)′d(xk) = D1 < 0.
Hence the sequence of iterates xk converges to an optimal
solution.

3289



4. NUMERICAL RESULTS

In this section, we provide numerical results to compare the
convergence of the proposed distributed algorithm to those of
the block coordinate descent (BCD) and parallel variable dis-
tribution (PVD) . We consider a three-bin resource allocation
example for the numerical simulation. Let there be N = 100
agents. Each agent has fixed quantity of resources that are to
be allocated among three bins. Let xi = [xi,1, xi,2, xi,3]

′ de-
note the allocation scheme of the ith agent. Without loss of
generality, let

∑3

j=1
xi,j = 1, ∀ i. The objective is to mini-

mize the sum of the individual costs, where the cost of agents
depends on their own scheme and the schemes of other agents.

Let x = [x′
1,x

′
2, . . . ,x

′
N ]′ denote the collective scheme

of all agents. The cost function of the ith agent is taken as

fi(x) = x′
iP ig(x), (16)

where P i = diag(pi,1, pi,2, pi,2) denotes the preference ma-
trix of the ith agent for each bin, and g(x) = [g1, g2, g3]

′ is a
function dependent on the schemes of all agents, with

gm =

(
N∑

i=1

xi,m

)2

, m ∈ {1, 2, 3}. (17)

The goal is to solve the optimization problem:

min
x

N∑

i=1

fi(x) subject to

3∑

j=1

xi,j = 1, ∀ i. (18)

In order to find the solution to the above joint optimization
problem, we solved N = 100 subproblems in parallel us-
ing our proposed PDAR. The optimization problem of the ith

agent in the kth iteration is given as

min
xi

fi(xi, x̂
k−1

−i ) + λk
i (h

k−1

i )‖xi − x̂
k−1

i ‖2

subject to

3∑

j=1

xi,j = 1.
(19)

In Fig. 1a, we plot the value of the objective function as
a function of the “normalized time” for BCD, PVD and our
PDAR approach. We say “normalized time” to note the run-
time of the parallel algorithms if we were not limited by the
number of cores. In our example, we ran all the simulations
on a 4 core machine; however in principle the parallel meth-
ods can run on 100 cores simultaneously. In order to make the
comparison computer independent, the time axis correspond-
ing to parallel methods was divided by 25. As illustrated,
the convergence rate of our method is of an order of mag-
nitude faster compared to BCD and PVD algorithms. The
advantage comes from the fact that we can solve all the 100
optimization problems in parallel, whereas BCD is a sequen-
tial method. The PVD method, on the other hand, is worse

even though it has a parallel update step. The additional time
it takes to converge is due to the synchronization step, and
due to the complexity of the optimization problems that are
to be solved in both steps. In Fig. 1b, we show the oscillatory
behavior when the parallel algorithm is used with out a reg-
ularizer. This figure further emphasizes the importance of a
regularizer.
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Fig. 1: Value of the objective functions vs time for the three
bin resource allocation problem. Fig. 1a shows that PDAR
converges much faster compared to BCD and PVD. Fig. 1b
shows the oscillatory behavior of the parallel optimization
without regularization.

5. CONCLUSIONS

In this paper, we proposed a distributed optimization frame-
work to solve large optimization problems with separable
constraints. Each agent solves a local optimization problem,
which is much simpler compared to the joint optimization.
In order for the agents to coordinate among themselves and
to reach an optimum solution, we introduced a regularization
term that penalized the changes in the successive iterations
with an adaptive regularization coefficient. We proved that
our solution always converges to a local optimum, and to a
global optimum if the overall objective function is convex.
Numerical simulations showed that the solutions reached by
our algorithm are the same as the ones obtained using other
distributed approaches, with significantly reduced computa-
tion time.
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