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ABSTRACT 

 

We apply our recently developed concept of mutual 

exclusivity [1] in the context of discriminative coding, to the 

problem of learning dictionary for representing signals 

drawn from N classes in a way that optimizes their 

discriminability. We first briefly review our mutual-

exclusivity concept and then deploy it a simple 

discriminative dictionary learning algorithm that directly 

generalizes the well-known KSVD algorithm which is 

addressed for the traditional problem of signal coding. We 

demonstrate performance improvements over traditional 

KSVD based feature extraction schemes and conclude by 

describing avenues for future research. 

 

Index Terms— ATR, discriminative dictionary, mutual 

exclusivity, sparsity, feature selection 

 

1. INTRODUCTION 

A fundamental signal processing and machine learning 

problem is the discrimination of signals into N different 

classes. Traditionally the emphasis has been laid on 

optimizing the classification engine (given the features of 

the object being analyzed) ranging from the classical LDA 

(linear discriminative analysis) of Fischer [2] to Support 

Vector Machines (SVMs) of Vapnik [3]. More recently 

probabilistic graphical modeling based approaches such as 

[4-6] have shown considerable promise in delivering state-

of-the-art results for ATR (automatic target recognition). 

 However an equally important aspect of the problem is 

the determination of features (corresponding to the 

signals)—given which the classification engine can be 

applied. The choice of features is crucial in determining the 

success of the overall classification system regardless of the 

classification engine being applied. In this paper we focus 

on this latter problem in the context of discriminative 

dictionary learning (DDL). 

 The generation of features for signal classification 

generally occurs in two stages. The first stage consists of the 

determination of low-level features based oftentimes on 

physical intuition of the processes generating the data or the 

phenomenology associated with the application domain. 

Examples of these include, respectively, micro-Doppler 

features in radar systems [7], SIFT descriptors and their 

variants for images [8]. For the second stage we observe that 

in principle such low-level features can again be treated as 

data vectors from which higher-level features can be 

extracted and so forth (as is done for example in so-called 

deep neural networks [9]). At the end of this process we 

again have a set of feature vectors corresponding to each 

class (which could comprise of any combination of features 

from various levels). 

 We demonstrate in this paper that the final set of 

features thus obtained from the above two-stage process, 

organized in the form of a data matrix X (where each 

column of the matrix is a feature of the signal), can be 

discriminatively coded in an optimum fashion using the 

concept of mutual exclusivity that we introduced in [1] via 

our dM-KSVD (Discriminative Mutually-Exclusive KSVD) 

algorithms that we proposed in this paper. The proposed 

dM-KSVD algorithms are designed to maximize the 

separability of the resulting features in feature space. 

 In the next section we briefly review the concept of 

mutual exclusivity and its important properties. Thereafter 

we describe our dM-KSVD algorithm in some detail in 

Section 3. In Section 4 we demonstrate Simulation and 

conclude in Section 5 with a discussion of the future work 

stemming from this work. 

 

2. MUTUAL EXCLUSIVITY 

Let          be a dictionary of unit norm vectors in the 

columns such that any vector in      can be described by 

linear combination of columns of  . We typically operate in 

the under-determined case wherein    . Given this 

suppose we have 2 classes of vectors generated from   thus: 

                                               (1) 

                                 (2) 

such that    [  
      

 ] is a matrix of N codes (  
    ) 

corresponding to class i; and where    [  
      

 ]  

     contains the corresponding set of realizations (  
  

  ) of class i. Given this we define mutual exclusivity as 

follows [1]: 

Definition 1. Two codes    and    are mutually exclusive if 

for all k we have:(  ( )   )  (  ( )   ) and (  ( )  
 )  (  ( )   )  
Definition 2. Given matrix codes    and    for class#1 and 

class#2 respectively as defined above, we define the 3 

different mutual-exclusion operators   (     ) between 

the two classes as follows:  
1.   (     )   ‖     ‖                  (3) 
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2.   (     )   ‖|  |  |  |‖    √‖  ‖ 
  ‖  ‖ 

   (4) 

3.   (     )  √‖  ‖ 
  ‖  ‖ 

  
‖  ‖ 

  ‖  ‖ 
 

‖|  | |  |‖  
   

       (5) 

where, | | yields a matrix whose every element is an 

absolute value of the corresponding element in  ; where 

‖ ‖  is the matrix Frobenius norm operator; and where 

    is a pre-defined constant. When referring to mutual 

exclusivity operators in general we use the subscript  . 

When      and      are vectors, for shorthand we 

denote  (   ) by  ( ) where    [    ] . Following 

are some relevant theoretical properties of the   operator. 

Lemma 1 [1] (Positivity):  (     )                            

Lemma 2 [1] (Mutual Exclusivity):  (     )    if and 

only if the non-trivial set of matrix codes    and    are 

mutually exclusive           

Lemma 3 (Separable and Approximate Convexity): 

Let          

a)   (   ) is separably convex in each variable 

b)    is approximately convex in the following 

sense: 

   (   (   ) )      ( )  (  

 )  ( )   0.5. (   )‖   ‖  

c)    is approximately convex in the following 

sense: 

   (   (   ) )      ( )  (  

 )  ( )   C. (   )‖   ‖  
where       . Furthermore all the   operators above are 

asymptotically convex (i.e. as    ) for Gaussian signals 

In the next section we describe how the mutual 

exclusivity operator is deployed for constructing 

discriminative dictionary learning algorithms. 

 

3. DDL ALGORITHMS 

The central computational task that we are concerned with is 

as follows: Find the best dictionary to discriminate the 

samples {  
 }   
  drawn from class#1 from the samples 

{  
 }   
  drawn from class#2, by solving: 

           ‖       ‖ 
 
 ‖       ‖ 

 
          (6) 

subject to    (     )      

           ‖  ‖      

             ‖  ‖      
 (where     

   ,     
    are matrices whose columns 

are drawn respectively from Class#1 and Class#2) 

 We solve the above computational task via two 

algorithmic procedures—dM-KSVD1 and dM-KSVD2—

that incorporate the mutual exclusivity operator in different 

ways. These algorithms are described, respectively, in 

Figure 3 and Figure 4. Our dM-KSVD algorithms furnish a 

dictionary   that enables the generation of discriminative 

feature vectors for Class#1 and Class#2 that are both sparse 

and mutually exclusive with respect to  . 

 Both the dM-KSVD algorithms replace the traditional 

sparse coding stage with a discriminative coding stage while 

leaving the KSVD based dictionary update intact. An 

important quantity that is used by these algorithms is the 

steering vector which we define as follows: 

Definition 3. Let {  
 }   
  and {  

 }   
  be training samples of 

Class#1 and Class#2 respectively, then the steering vector 

of Class#i (with respect to Class#j) is given by: 

     ( )  
 

 
∑   (    

 
) 

              

 In dM-KSVD1 the training vectors of a given class are 

iteratively coded with respect to the associated steering 

vector for that class, followed by update of the steering 

vector and so forth. In dM-KSVD2 however all the training 

vectors are coded separately w.r.t. the steering vectors of 

both classes and thereafter the sparsest of the two solutions 

is chosen to be the final code vector associated with the 

given sample. The resulting discriminative codes (features) 

of the training samples are used to training a classifier (in 

our case SVMs) which can then be used to classify the test 

samples. 

 Once the discriminative dictionary is obtained as above, 

the test samples are discriminatively coded in the manner in 

which it was performed for the dM-KSVD1 or dM-KSVD2 

algorithm (depending on which method was used to 

calculate the dictionary  ). Thereafter the resulting test 

sample is classified using the classifier trained above. 

 

4. SIMULATION RESULTS 

We created two classes of vectors with controlled levels of 

similarity and distortion as follows. Firstly we generated 

both classes from a overcomplete dictionary:   

[     ]   
   , where       and     

  (
 

 
)
 is a 

orthonormal dictionary (i.e.    )—which is chosen to be 

either Fourier, Dirac or Haar dictionaries. Thus three 

different overcomplete dictionaries are considered: Dirac-

Haar (DH), Fourier-Dirac (FD), and Fourier-Haar (FH) 

dictionaries. We chose      (i.e.   64) in our 

simulations. 

The K atoms from class#i are drawn according to a 

two-sided Gaussian distribution indexed over the atoms 

(columns) of the sub-dictionaries which we define as 

follows: 

  (         
    

 )  {

   
 

  
    

   (        
 )         

   
 

  
    

   (        
 )        

      (7) 

Where: 

  (        
 )   

 

√    
   ( 

(    )
 

(  
 )
 )        (8) 

         (        
 )   

 

√    
   ( 

(    )
 

(  
 )
 )        (9) 

In our simulations we chose K=8, (         
  

      
       ), (          

         
      ). 
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We note that the Fourier-Dirac and Fourier-Haar 

dictionaries are used to generate the training and test 

samples. The optimum KSVD and dM-KSVD dictionaries 

calculated from the training samples are used to extract 

features from the samples.  

Table 1.1 and Table 1.2 shows, respectively the 

performance dM-KSVD1 algorithm for the Fourier-Dirac 

and Fourier-Haar dictionaries. Table 2.1 and Table 2.2 show 

the corresponding performance of dM-KSVD2; and Table 

3.1 and Table 3.2 show the corresponding performance of 

KSVD feature extraction procedure. 

Figure 1 and Figure 2 show a snapshot of mutual 

exclusivity values of test samples due to K-DVD and dM-

KSVD1 discriminative coding schemes for the case of 

Fourier-Dirac and Fourier-Haar dictionaries respectively.  

From these results we can clearly observe the 

performance gains due to employing dictionaries due the 

dM-KSVD algorithms for extracting discriminative features 

as compared to the transitional pure sparsity based 

approaches. We also see how the features calculated due to 

the dM-KSVD1 approach does indeed render the features to 

be more mutually exclusive as compared to KSVD 

approach. 

We further remark that unlike the dM-KSVD1 algorithm, 

in dM-KSVD2 discriminative coding scheme there is no 

explicit guarantee (i.e. by virtue of the algorithmic 

construction of the D-KSVD#2 algorithm) that the mutual 

exclusivity will decrease as compared to KSVD based 

sparsity coding scheme—nevertheless, classification 

performance w.r.t. KSVD based coding schemes can be 

observed as shown below. 

 

5. DISCUSSION 

We have demonstrated how our newly developed concept of 

mutual exclusivity can be deployed in constructing a 

dictionary   that can be used to generate discriminative 

codes that are optimized for classification purposes. We 

presented two different flavors of DDL algorithms that build 

upon the well known KSVD algorithm by replacing the 

sparse coding step by a discriminative coding step that 

exploits the mutual exclusivity operator. We used only the 

   operator in our DDL algorithms. Future work includes 

reducing the computational complexity via advanced convex 

optimization techniques, and incorporating other mutual 

exclusivity operators such as    and    into DDL 

algorithms. 
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 Class1 Class2 

Class1 0.9688 0.0312 

Class2 0.0781 0.9219 

 Class1 Class2 

Class1 0.9531 0.0469 

Class2 0.0703 0.9297 

 Class1 Class2 

Class1 0.8750 0.1250 

Class2 0.1094 0.8906 

 Class1 Class2 

Class1 0.9063 0.0937 

Class2 0.1719 0.8281 

 Class1 Class2 

Class1 0.9297 0.0703 

Class2 0.1719 0.8281 

 Class1 Class2 

Class1 0.8291 0.1709 

Class2 0.1562 0.8438 

Table 1.1: dM-KSVD1 Performance: 
 For the case where Fourier-Dirac 
dictionary is used to generate the 
Classes 

Table 2.1: dM-KSVD2 Performance: 
 For the case where Fourier-Dirac 
dictionary is used to generate the 
Classes 

Table 3.1: KSVD Performance: 
 For the case where Fourier-Dirac 
dictionary is used to generate the 
Classes 

Table 1.2: dM-KSVD1 Performance: 
 For the case where Fourier-Haar 
dictionary is used to generate the 
Classes 

Table 2.2: dM-KSVD2 Performance: 
 For the case where Fourier-Haar 
dictionary is used to generate the 
Classes 

Table 3.2: KSVD Performance: 
 For the case where Fourier-Haar 
dictionary is used to generate the 
Classes 
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     Figure#3: dM-KSVD1 Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure#4: dM-KSVD2 Algorithm 

dM-KSVD1 Algorithm (Type#1 of Discriminative Mutually-Exclusive (dM) KSVD Algorithm): 

    0) Initialization: Initialize the dictionary matrix  ( )       with    normalized columns. Set J=1. 

Repeat until convergence (stopping rule): 

    1) Discriminative Coding Stage: 

        ‒ Initialize the codes for each of the elements of the two classes by sparsely coding the data vectors with respect  

           to dictionary  ( ) to obtain codes {  
 }   
  and {  

 }   
  for Class#1 and Class#2 respectively 

        ‒ Discriminatively code samples of Class#1: 

           For m = 1 to M 

 Form the steering vector    for Class#1: 

                    ( )  
 

 
∑   (    

 ) 
     

 Discriminative code Update: If mod(m, 2)==1, then solve for all i: 

                    
      ‖  

    ‖ 
   ‖ ‖     ( )   (?) 

 Steering vector update: If mod(m, 2)==0, then re-calculate the codes for Class#2 based on {  
 }   
  

above. Based on this re-calculate the steering vector   . 

       ‒ Discriminatively code samples of Class#2 in a manner analogous to described above 

   2) Perform KSVD-type Codebook Update: 

       Given    [     ] and    [     ]; then, perform the standard KSVD codebook update to obtain  ( )  
   3) Set J = J + 1 
 

 

dM-KSVD2 Algorithm (Type#2 of Discriminative Mutually-Exclusive (dM) KSVD Algorithm): 

    0) Initialization: Initialize the dictionary matrix  ( )       with    normalized columns. Set J=1. 

Repeat until convergence (stopping rule): 

    1) Discriminative Coding Stage: 

        ‒ Initialize the codes for each of the elements of the two classes by sparsely coding the data vectors with respect  

           to dictionary  ( ) to obtain codes {  
 }   
  and {  

 }   
  for Class#1 and Class#2 respectively 

        ‒ Discriminatively code samples of Class#1: 

           Form the steering vector    for Class#1:   ( )  
 

 
∑   (    

 ) 
    

           For m = 1 to N 

 Discriminatively code all training samples w.r.t. Class#1 steering vector: 

                    
        ‖  

    ‖ 
   ‖ ‖     ( ) 

                    
        ‖  

    ‖ 
   ‖ ‖     ( ) 

       ‒ Discriminatively code samples of Class#2 in a manner analogous to described above w.r.t. steering vector     

          for Class#2:   ( )  
 

 
∑   (    

 ) 
    

       ‒ For each i=1:N, let   
  be the assigned the sparsest solution between   

   
 and   

   
; and similarly for   

 . 

   2) Perform KSVD-type Codebook Update: 

       Given    [     ] and    [     ]; then, perform the standard KSVD codebook update to obtain  ( )  
   3) Set J = J + 1 
 

 

Figure 1: Snapshot of mutual exclusivity values of test samples due to 

K-DVD and dM-KSVD#1 discriminative coding schemes  for the case of 

Fourier-Dirac generative dictionary 

 

Figure 2: Snapshot of mutual exclusivity values of test samples due to 

K-DVD and dM-KSVD#1 discriminative coding schemes  for the case of 

Fourier-Haar generative dictionary 
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