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ABSTRACT
A wireless sensor network is engaged in a statistical learning
task, to be accomplished in a decentralized fashion. The fo-
cus here is in distributed Nearest-Neighbor (NN) regression,
in the presence of communication constraints. We first intro-
duce a general channel access policy which allows the fusion
center to recover training-set labels ordered according to the
NN criterion, in the absence of any data exchange among sen-
sors. Then, two different paradigms are considered, where the
communication cost is measured as: i) the channel accesses;
ii) the quantization bits. In the former scenario, we propose a
distributed NN strategy reaching an asymptotic performance
of twice the minimum achievable mean-square error, with
only one sensor transmitting information. In the latter case,
we achieve universally consistent distributed NN regression
even with one-bit quantized labels.

Index Terms— Statistical learning, Nonparametric in-
ference, Universal estimation, Distributed learning, Wireless
sensor networks.

1. DISTRIBUTED LEARNING MODEL

Distribution-free or nonparametric inference [1] is a well-
established discipline, nowadays ubiquitous in a number of
real-world applications. It basically deals with estimating a
response variable Y0 ∈ R, based on a measured observation
variable X0 ∈ Rd, when the joint statistical distribution of
(X0, Y0) is completely unknown [1]. In the specific context
of supervised learning, meaningful estimation is made possi-
ble by the availability of a training set Tn = {(Xi, Yi)}ni=1,
namely, a collection of independent, identically distributed
(i.i.d.) copies of (X0, Y0).

An estimator of Y0 can be formally represented as:

rn : Rd −→ R,

where rn(x0) = rn(x0, Tn) is a function of x0 and of the
training set Tn, the explicit dependence upon this latter being
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usually omitted for notational simplicity. One of the classi-
cal performance measure is the Mean Square Error (MSE),
which, by the orthogonality principle, can be written as:

E{[rn(X0)− Y0]
2} = E{[rn(X0)− r∗(X0)]

2}+ MMSE,
(1)

where r∗(x0) = E[Y0|X0 = x0] is the Minimum Mean
Square Error (MMSE) estimator, also called the (optimal)
regression function. A common practice is to look for univer-
sally consistent estimators, i.e., the ones reaching the optimal
regression function as n gets large (consistency), irrespective
of the underlying distribution (universality). Since the second
term at the RHS in eq. (1) is independent from the particular
estimation strategy, the goodness of any estimator rn(x0) can
be simply measured by the L2 error with respect to the op-
timal regression function, leading to the following definition
of consistency:

DEFINITION 1 [1, def. 1.3] A sequence of regression function
estimates {rn} is called weakly universally consistent if

lim
n→∞

E
{
[rn(X0)− r∗(X0)]

2
}
= 0

for all distributions of (X,Y ) with E[Y 2] < ∞.
This paper deals with a decentralized version of the

above problem, following the emerging paradigm of dis-
tributed learning proposed in [2–4]. A network of n sensors
is deployed for estimation purposes, and the training set is
disseminated through it: to make things simple, and without
loss of generality, each sensor reads a single example (Xi, Yi)
from Tn. At a certain epoch, the observation variable X0 is
made available to the Fusion Center (FC), which broadcasts
it to all nodes. By exploiting the locally available examples,
sensors deliver messages to the FC, which produces the final
estimate.

The network topology is parallel, and remote units have
limited complexity and available energy, implying severe
communication constraints on the channels from sensors to
the FC. Conversely, the reverse link is essentially uncon-
strained, such that X0 is perfectly recovered by the nodes.
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Fig. 1. MSE versus training set size for the example in eq. (2),
with MMSE=1/4. Note that MSE is normalized to optimum
(MMSE).

2. RELATED WORK AND MAIN CONTRIBUTIONS

Despite the long history of nonparametric regression, the
problem of distributed learning under communication con-
straints has been systematically addressed only recently [2–
4]. In [4] the authors show for the first time that distributed
universally consistent regression is possible, by using the
properties of the probabilistic universal quantizers proposed
in [5, 6]. More specifically, they propose a decentralized ver-
sion of the classical naive kernel estimator where the sensors
have three possibility: to send 0, 1 or to abstain. Moreover,
in [4] it is noted that “...nearest neighbor rules do not apply
as a given agent’s decision rule would then need to depend
on the data observed by the other agents; such interagent
communication is not allowed in the current model”.

In this manuscript we try to overcome this difficulty by
exploiting a peculiar access policy based on ordered trans-
missions, which allows us implementing Nearest Neighbor
(NN) rules in a fully decentralized fashion. The idea of or-
dered transmissions (in the context of parametric detection)
has been originally proposed in [7], and further developed
in [8, 9]. Capitalizing on this access policy, we propose two
distributed NN schemes, suited to different communication
constraints:
i) The communication cost is measured in terms of chan-
nel accesses. A scheme with only one sensor transmitting to
the FC is proposed, exhibitng an asymptotic performance of
twice the MMSE.
ii) The communication cost is measured in terms of quanti-
zation bits. A strategy with local quantizers is designed, and
proved to be universally weakly consistent, regardless of the
quantizers’ resolution.

As a preview of the results obtained in this paper, we con-
sider, without any pretence of generality, the following simple

example1:

X ∼ U(−1, 1), Y = Λ(X) +
√

MMSE W, (2)

where U(−1, 1) is an uniform random variable with support
[−1, 1]; Λ(x) is a triangular wave of period 2, with unitary
peak amplitude and Λ(0) = 0; W is a standard Gaussian,
independent of X . The optimal regression function is accord-
ingly r∗(x0) = Λ(x0).

The relative merits between the two proposed schemes are
shown in Fig. 1. Notably, for scheme i) the asymptotic limit
of 2× MMSE is practically met with just a dozen of elements
in the training set, and with only one sensor effectively send-
ing information. On the other hand, scheme ii) with one-
bit quantizers needs some more examples to get going, but
it reaches the unbeatable MMSE. For comparison purposes,
the classical NN algorithm corresponding to the bandwidth-
unconstrained system is also reported.

3. NEAREST-NEIGHBOR ACCESS

A classical choice for building estimators relies upon the so-
called local averaging regression functions [1]:

n∑
i=1

Wni(x0)Yi, (3)

where the weights are functions of x0 and of the observation
variables in the training set, namely, X1, X2, . . . , Xn. For the
NN regression, the weights are written as:

Wni(x0) =

{
1/k, if Xi is one of the k-NN of x0,
0, otherwise.

In order to conceive a decentralized implementation of a
local averaging regression function, two properties are key.
First, in eq. (3) the observation variables Xi act only on the
weights Wni(x0), so that they are basically decoupled from
the response variables Yi. In addition, the weights of the NN
rule exhibit an on-off structure. This suggests as a fundamen-
tal design guideline the following decoupled approach: an ac-
cess policy aimed at reproducing the weights at the FC, where
only the sensors with nonzero weights transmit their labels; a
coding strategy acting only on these relevant labels Yi to be
transmitted.

In the mentioned case of the naive kernel, this idea trans-
lates into the scheme of distributed regression with absten-
tion proposed in [4]. A further simplification there is that
the weight corresponding to the i-th sensor depends only on
the i-th observation (and on X0), such that abstention can be
completely determined by a locally available knowledge. In
our case of NN regression this fails to be true. With the gen-
eral “decoupling” philosophy in mind, we now introduce a
different access policy specifically tailored to the NN-rules.

1Note that a regression problem can be always written as Y = r∗(X) +
E , where E = Y − r∗(X), and E[E2] =MMSE.
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Fig. 2. NN access. The i-th sensor will transmit its label Yi

at a time instant based upon the distance ||Xi − X0||. This
allows the FC to recover the labels ordered according to the
NN criterion. Here Y(i,n) is a shortcut for Y(i,n)(X0).

Let:(
X(1,n)(x0), Y(1,n)(x0)

)
, . . . ,

(
X(n,n)(x0), Y(n,n)(x0)

)
,

be the sequence of pairs ordered according to

∥X(1,n)(x0)− x0∥ ≤ · · · ≤ ∥X(n,n)(x0)− x0∥,

where ∥ · ∥ denotes the standard Euclidean norm in Rd.
We rule out ties by assuming continuous random variables2.
The NN-regression function we are interested is accordingly
(1/k)

∑k
i=1 Y(i,n)(x0).

The proposed NN access policy is as follows, see Fig. 2.
The i-th sensor evaluates the local distance ∥Xi − X0∥ be-
tween its training observation Xi, and the current X0. Then,
it sends the label Yi over the channel, at a transmission instant
directly related (say, proportional) to ∥Xi −X0∥. The origin
of the transmission time axis can be safely set when the sen-
sors receive a certain broadcast message from the FC, for in-
stance, when the common observation X0 is sent. It is worth
noting that the distances ∥X(i,n) − X0∥ vanish as n grows,
so that in practice the proportionality constant must properly
scale with n to avoid collapse. Assuming that each sensor is
informed about the value of n, the scaling law for the propor-
tionality constant can be chosen by resorting to the powerful
theory of spacings [10]. Details on this are here omitted for
space reasons, and will be reported elsewhere [11].

With this protocol, the nodes with smaller values ∥Xi −
X0∥ transmit first: the FC gets the labels ordered just in terms
of the desired NN criterion. Thus, the FC is able to compute
the weights relevant for the evaluation of (3), or, equivalently,
the ordered labels Y(i,n)(x0). Note that this is obtained with-
out transmitting the value of the observation variables Xi.

2Even when this is not the case, the observation space can be artificially
enlarged by including a random continuous component, as detailed in [1].

4. SINGLE-TRANSMISSION LEARNING

Under this paradigm we impose the communication cost
in terms of channel accesses. This philosophy has a well-
established tradition in the literature (see, e.g., [12]), and is
suited to those applications where the burden associated to
higher-layer protocols is significant, such that, when com-
munication takes place, it convenient to send high-resolution
data, here taken as continuous random variables.

We are specifically interested in the most economic oper-
ational point of a single transmission. The proposed strategy
can be schematically summarized:
1) each sensor prepares the unquantized label Yi, to be sent
according to the NN access policy;
2) after receiving the first (quickest) delivery, the FC inhibits
any further transmission by a broadcast stop message.
Therefore, the FC collects only the nearest-neighbor la-
bel Y(1,n)(X0). Using the nearest neighbor for estimation
purposes has a long history, since the pioneering work by
Cover [13]. Using the known results in [13], we can state
(without proof) the following claim.

PROPOSITION (Single-transmission Nearest-Neighbor). Let
Y1,n(X0) be the nearest-neighbor label received by the fusion
center with the single-transmission protocol. Let r∗(x) be the
optimal regression function, and define the conditional vari-
ance σ2(x) = E[Y 2|X = x]−r∗(x)2. Under the assumption
of finite second moment for X , if there exist positive constants
A and B, such that, for any x1, x2 ∈ Rd:

[r∗(x1)− r∗(x2)]
2 ≤ A∥x1 − x2∥2

|σ2(x1)− σ2(x2)| ≤ B∥x1 − x2∥2,

then, for n → ∞,

E
{
[Y1,n(X0)− Y0]

2
}
−→ 2MMSE,

that is, asymptotically, a loss of a factor 2 is suffered, with
respect to the optimal MMSE estimator. □

Remarkably, the above proposition shows that we can
build an universal, distributed NN estimator by using only
one transmitting sensor, with the performance of twice the
MMSE.

5. UNIVERSALLY CONSISTENT NN RULES WITH
UNIVERSAL QUANTIZATION

This can be perhaps considered as a more conventional com-
munication paradigm. Here:
1) each sensor prepares a quantized version of the label Yi,
again to be sent according to our NN transmission policy;
2) the FC inhibits any further transmission by a broadcast stop
message, after having received the first kn deliveries.

The lack of knowledge about the underlying distribution
prevent us from classical quantizer design. We instead need
some universal quantization rule. We accordingly resort to

3280



the probabilistic universal quantizers proposed in [5, 6]. As-
sume first that Y is a bounded random variable, with |Y | ≤ V ,
and that we want to quantize it into b bits. We accordingly di-
vide [−V, V ] into intervals of length ∆ = (2V )/(2b − 1),
obtaining the thresholds τi = −V + i∆, i = 0, 1, . . . , 2b − 1.
Then, we find the interval where y lies, and round it to one
of the endpoints by a biased coin flip. For instance, if y ∈
[τi, τi+1): P{Q(y; b) = τi+1} = p. The output of the quan-
tizer is thus a binary random variable taking values τi+1 and
τi, with probability p and 1− p, respectively. For any fixed y,
the above quantizers can be made unbiased, a property that is
key in building consistent estimators. As a matter of fact, the
choice p = (y − τi)/∆ yields E{Q(y; b)} = y (expectation
computed w.r.t. to the randomness of the quantizers only, y
being deterministic). The quantizer variance is easily evalu-
ated and upper bounded as E{[Q(y; b)−y]2} ≤ ∆2/4, having
used the relation p(1− p) ≤ 1/4, for p ∈ [0, 1].

The above arguments hold if Y is bounded. This limita-
tion is easily removed as follows, see [4]. For an unbounded
Y , arbitrarily choose a range [−V, V ], where the quantizer
works as described earlier. When |y| > V choose uniformly
at random between ±V . Thus, whenever |y| > V , Q(y; b)
is a zero-mean binary random variable taking values ±V ,
with variance V 2. Furthermore, we shall allow the quantiz-
ers’ support to depend upon the number of sensors n, namely
V = Vn. With an abuse of notation, we accordingly will use
Qn(y) = Q(y; b, Vn), where the dependence on Vn is con-
tained in the suffix n, and that on b is suppressed, because we
shall work with an arbitrary, but fixed, number of bits. We
finally have

E{Qn(y)} = y IVn(y), VAR{Qn(y)} ≤ V 2
n , (4)

where Vn = [−Vn, Vn], and IVn(y) is the indicator function
of the set Vn.

We are now ready to present the distributed NN algorithm
with quantized labels. As said, a label Yi must be quantized
before being transmitted according to the NN access rule.
Accordingly, the FC builds an estimated regression function
close in shape to (3), with the original labels replaced with
their quantized counterparts:

rn(x0) =

n∑
i=1

Wni(x0)Qn(Yi). (5)

We have the following
THEOREM (Quantized kn-NN). For any kn → ∞, with
kn/n → 0, the estimated regression function (5) is weakly
universally consistent for all distributions of (X,Y ) with
E
{
Y 2

}
< ∞, provided that Vn → ∞, and that V 2

n /kn →
0. □
Sketch of proof. We denote by r̄n(x0) the expectation of
rn(x0) conditioned on Tn and X0:

r̄n(x0) = rNN
n (x0)−

n∑
i=1

Wni(x0)Yi IVc
n
(Yi), (6)

where Vc
n is the complement of Vn with respect to R, and

rNN
n (x0) = (1/kn)

∑kn

i=1 Y(i,n)(x0) is the desired NN re-
gression function with unquantized data. The above follows
from the fact that, conditioned on Tn and X0, the only ran-
domness is in the quantizers’ output, whose average is com-
puted by the first of eqs. (4). The undesired error term as-
cribed to the overload region of the quantizers can be con-
trolled by letting the range Vn to diverge in a suitable way, as
we shall promptly show. We can write

E
{
[rn(X0)− r∗(X0)]

2
}

= E
{
[rn(X0)− r̄n(X0)]

2
}

+ E
{
[r̄n(X0)− r∗(X0)]

2
}
,

which is upper bounded by

2 E{[rNN
n (X0)− r∗(X0)]

2}︸ ︷︷ ︸
classical kn-NN L2 error

+2 E{[
n∑

i=1

Wni(X0)Yi IVc
n
(Yi)]

2}︸ ︷︷ ︸
overload error

+ E{E{[rn(X0)− r̄n(X0)]
2|Tn, X0}︸ ︷︷ ︸

conditional variance of rn(X0)

}, (7)

having used eq. (6) and the well-known sum-of-squares in-
equality (

∑k
j=1 aj)

2 ≤ k
∑k

j=1 a
2
j . The first term is the dif-

ference between the optimal regression function r∗(X0) and
the classical kn-NN estimator, which is known to reach weak
consistency [1], provided that kn → ∞ and kn/n → 0. As
to the overload term, using the sum-of-squares inequality and
assumption 1 of Stone’s theorem [1, 14], it is upper bounded,
for a given c > 0, by cE{Y 2IVc

n
(Y )}, which clearly vanishes

as n goes to infinity. Finally, using the independence among
the quantizer randomizations, the inner expectation in the last
term of eq. (7) can be rewritten as

n∑
i=1

W 2
ni(X0)VAR{Qn(Y )|Tn, X0} ≤ V 2

n

kn
.

The inequality follows by using the second of eqs. (4). By
assumption V 2

n /kn → 0, which ends the proof. •

6. CONCLUSIONS

Distributed nearest-neighbor regression under different com-
munication constraints is addressed: when the constraint is
on the channel accesses, a 2× MMSE performance is reached
with only one sensor transmitting; when the bit-rate matters,
the optimal MMSE is achievable, even with one-bit quantiz-
ers. This summarizes the main technical findings of the paper.

Beyond the opening example discussed in Sect. 2, space
reasons prevent us from providing computer experiments
corroborating our convergence results and, more important,
showing the convergence rates of the different schemes. A
more in-depth investigation of these issues will be reported
elsewere. We stress, finally, that the estimation schemes
presented in this work emerge as the basic building blocks
for distributed learning over the wireless channel, where the
effect of noisy and fading links must be incorporated [11].
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