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ABSTRACT

Feature subset selection, as a special case of the general subset selec-
tion problem, attracted a lot of research attention due to the growing
importance of data-mining applications. However, since finding the
optimal subset is an NP-hard problem, very different heuristic search
methods have been suggested to approximate it. Here we propose a
new second-order cone programming based search strategy to effi-
ciently solve the feature subset selection for large-scale problems.
Experimentally, it is shown that its performance is almost always
better than the greedy search methods especially when the features
are strongly dependent.

Index Terms— second-order cone, search method, feature se-
lection, convex approximation

1. INTRODUCTION

While, at least in theory, having more features should result in a
more discriminative classifier, it is not the case in practice because
of many reasons, foremost of which are curse of dimensionality and
computational complexity. Therefore, dimensionality reduction is
a must in most real-world applications. Here we mainly focus on
feature subset selection as a common approach for dimensionality
reduction.

Various feature selection algorithms proposed in literature may
roughly be categorized into three different groups (see [1] and ref-
erences therein): Wrapper methods, embedded methods and filter
methods. The wrapper methods exhaustively search through the
whole subset space for the optimal feature subset that maximizes the
classification (generally induction algorithm) accuracy [2]. How-
ever, their main disadvantages are: First, by increasing the number
of features they rapidly become prohibitive due to a so-called combi-
natorial explosion and second, training an induction algorithm with
all the feasible feature subsets, may largely increase the over-fitting
risk.

The second group of feature selection algorithms rely on inter-
nal parameters of the induction algorithm [3], [4]. Embedded ap-
proaches rank features during the training process and thus simul-
taneously determine both the optimal features and the parameters
of the induction algorithm. However, they are highly dependent on
the internal structure of the learning algorithms and cannot be seen
as a general feature selection solution for all induction algorithms.
Similar to the wrapper methods, they are dependent on the learning
part and thus the selected subset is somehow tuned to a particular
induction algorithm.

Unlike the first two groups, filter methods do not incorporate the
learning part and thus show a better generalization power on the dif-
ferent induction algorithms. Generally, filter methods use predefined
measure functions like an information-theoretic measure suggested

in [5] to score the feature subsets and use a search algorithm to opti-
mize this measure over the feature subset space.

From another standpoint, feature selection methods may be clas-
sified into three classes based on the search strategies they employ:
The exhaustive search methods, random methods and greedy meth-
ods. Two main examples of the exhaustive search family are the
wrapper methods and branch and bound based methods [6]. Ran-
dom methods as the second class of the search strategies , usually
employ an evolutionary algorithm like genetic algorithm or simu-
lated annealing to gradually evolve an initial feature subset towards
better solutions [7]. They are usually much less computationally ex-
pensive at the expense that they may not converge to the optimal
solution. The third group of methods which are also called greedy
hill climbing or sequential selection approaches, are very commonly
used in filter methods due to their simplicity and low memory re-
quirements [8]. Greedy algorithms iteratively evaluate a candidate
subset of features, then modify the subset and evaluate if the new
subset is an improvement over the old. However, since they dra-
matically narrow down the search space, they may not converge to
the optimal solution and in some extreme cases result in a very poor
performance.

Here we introduce a fourth class of the search strategies which is
based on a second-order cone programming [9] (SOCP) relaxation of
the subset selection problem. We show that an SOCP approximation
can be employed to efficiently solve the combinatorial subset selec-
tion problem. Our experiments indicate that the proposed algorithm
usually results in better performance than the greedy algorithms and
especially outperforms the sequential selection methods for a) data
sets with a large number of features but a very few samples. b) data
sets with highly dependent features.

2. SUBSET SELECTION

We define the feature selection problem as follows:

Definition 1: Given N features, Xi for i = 1 to N , and a class
label C (dependent variable), select a subset of P ≪N features that
maximizes the measure function.

From the Definition 1 it is clear that any feature selection algo-
rithm has to address two main challenges: a) Define an appropriate
measure function (or evaluation metric or score function among so
many other names in literature) to evaluate the feature subsets. b)
Develop an efficient search strategy that can find the optimal fea-
ture subset, in the sense of optimizing the measure function, within
a reasonable amount of time.

In practice, the exact value of P can be obtained by evaluating
different P -cardinality subsets with the induction algorithm. Here
we use an information-theoretic measure function and develop an
SOCP based search strategy to optimize this measure function.
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2.1. Measure Function

Let X = [X1, X2, ..., XN ] be an N dimensional feature vector and
C a dependent variable which can be a class label in case of classifi-
cation or a target variable in case of regression. The mutual informa-
tion function is defined as a distance from independence between X

and C measured by the Kullback-Leibler divergence [10]. Basically,
mutual information measures the amount of information shared be-
tween X and C by measuring their dependency level. Denoting the
joint pdf of X and C and their marginal distributions by Pr(X, C),
Pr(X) and Pr(C), respectively, the mutual information between
the feature vector and the class label can be defined as follows:

I(X1, X2, . . . ,XN ;C)= I(X;C) =
∫

Pr(X, C)log
Pr(X, C)

Pr(X)Pr(C)
dX dC (1)

It reaches its maximum value when the dependent variable is per-
fectly described by the feature set. In this case mutual information
is equal to H(C), the Shannon entropy of C. Despite the theoreti-
cal appeal of the mutual information measure [11], given a limited
amount of data an accurate estimate of the mutual information would
be impossible. Because to calculate (1), estimation of the high di-
mensional joint probability Pr(X, C) is inevitable which is, in turn,
known to be an NP hard problem [12]. Therefore, several approxi-
mations of (1) have been suggested [13], [5]. Here we mainly use the
Minimal Redundancy Maximal Relevance (mRMR) measure func-
tion,

D{X}=
N
∑

i=1

I(Xi;C)−
1

N − 1

N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj) (2)

proposed by Peng et al [5] to approximate the mutual information
function. In (2), we denoted the set of Xi features with X.

2.2. SOCP Based Search Method

A search strategy is an algorithm trying to optimize the measure
function over the space of the feature subsets with 2N members1.
Two commonly used search algorithms in filter based feature selec-
tion methods are forward selection and backward elimination algo-
rithms, defined as:

Definition 2: The forward selection algorithm selects a set S
of size P iteratively as follows: 1- Initialize S0 = ∅. 2- In each
iteration i+1, select the variable Xm maximizing D(Si ∪Xm), and
set Si+1 = Si ∪Xm. 3- Output SP .

In an entirely analogous fashion, backward elimination can be
described as: 1- Start with the full set of feature SN . 2- Iteratively
remove a feature Xm maximizing the D(Si\Xm) and set Si−1 =
Si\Xm where removing X from the set S is denoted by S\X . 3-
Output SP .

An experimentally comparative evaluation of several variants of
these two algorithms has been conducted in [8]. Generally the main
disadvantage of the forward selection method is that it only can eval-
uate the utility of a single feature in the limited context of the pre-
viously selected features. Contrary to forward selection, backward
elimination can evaluate the contribution of a given feature in the
context of all other features. Perhaps that is why it has been fre-
quently reported to show superior performance than forward selec-
tion. However, its overemphasis on feature interactions may result

1Given a P , the size of the feature subset space reduces to
(

N
P

)

.

in eliminating some strong independent features in favor of weak
features that have some information in their interactions. Generally,
in case of dependent features, where the relation between features
are complicated, it is unlikely that the sequential search strategies,
converge to a close to optimal solution.

To propose a new approximation method, the underlying com-
binatorial problem has to be studied. To this end, we may formulate
the Subset Selection Problem (SSP) in Definition 1 as:

max
x

x
T
Qx

(SSP)
N
∑

i=1

xi = P (3)

xi ∈ {0, 1} for i = 1, . . . , N

where Q is a symmetric information matrix constructed from the
mutual information terms in (2) as:

Q =











I(X1;C) · · · −β

2
I(X1;XN )

−β

2
I(X1;X2) · · · −β

2
I(X2;XN )

...
. . .

...
−β

2
I(X1;XN ) · · · I(XN ;C)











(4)

and x = [x1, . . . , xN ] is a binary vector where xi variables are
N set-membership binary variables indicating the presence of their
corresponding Xi features in the feature subset. Note that for the
mRMR measure function, the parameter β in (4) is equal to 1

P−1
.

It is straightforward to verify that for any binary vector x, the
objective function of (3) is equal to the mRMR measure function
D(Xnz) in (2) where Xnz = {Xi|xi = 1; i = 1, . . . , N}. That
is, for any given binary vector x, (3) is just another representation of
the mRMR measure. Note that in case of using other measures rather
than mRMR, for instance 1− I(X;C)/H(X, C) which is a metric
version of the mutual information or correlation based measures, the
matrix Q can be constructed by some small changes, analogously.

The (0,1)-quadratic programming problem (3) has attracted a
great deal of theoretical studies because of its importance in com-
binatorial problems [see 14, and references therein]. One popular
approach to solve this kind of problems is to use a semidefinite pro-
gramming relaxation which has been proved to give a tight approxi-
mation ratio bound. However, here we follow another approach sug-
gested in [15],[16] and [17] for solving the Max-Cut problem or its
K-dense constraint version in graph theory.

Denote Q0 as an N ×N matrix with zero diagonal entries and
off-diagonal elements equal to the off-diagonal elements of Q. Since
for binary variables x2

i = xi, the objective function of (3) can be
written as xTQ0x + qTx, where q is a vector of the diagonal ele-
ments of Q. In addition, since Q0 is a symmetric matrix with zero
diagonal entries, its largest eigenvalue is always greater than zero
(because Q0 can be neither positive nor negative definite), that is
λmax(Q0) ≥ 0 and λmin(Q0) ≤ 0. Hence, we may construct a
negative-definite matrix Qc = Q0 − λmax(Q0)I, where I is the
identity matrix. Now, (3) can be rewritten as:

max
x

x
T
Qcx+ q

T
x+ Pλmax(Q0)

N
∑

i=1

xi = P (5)

xi ∈ {0, 1} for i = 1, . . . , N

By defining an auxiliary variable α = xTQ0x and relaxing the hard
constraints xi ∈ {0, 1} to linear inequality constraints 0 ≤ xi ≤ 1,
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the final approximation of the (SSP) can be expressed as:

max
x,α

α+ q
T
x

(SOCP)
N
∑

i=1

xi = P (6)

xi ∈ [0, 1] for i = 1, . . . , N

α ≤ x
T
Qcx+ Pλmax(Q0)

where the last inequality comes from the fact that λmax(Q0)
∑N

i
x2
i

is smaller than λmax(Q0)
∑N

i
xi for xi between 0 and 1.

In this work we used Gurobi solver [18] which is sufficiently fast
for our experiments. It solves a problem of size N = 2000 in less
than 6 seconds and a large-scale SOCP problem with N = 10000
under an hour on a PC with an Intel Core i7 CPU.

Since the solution of (SOCP) is not necessarily a binary vec-
tor, we need more steps to attain a feasible solution. The following
three steps algorithm summarizes the approximation algorithm for
the (SSP). In the sequel, this algorithm is referred to as SOSS (SOCP
Subset Selection) algorithm.

SOSS Algorithm:

1. SOCP: Solve (SOCP) to obtain x.

2. Randomized rounding: Generate N random numbers ui with
uniform distribution U(0,1) and construct

x̂i =

{

1 if xi ≥ ui

0 if xi < ui

(7)

for all values of i between 1 to N . Select X = {Xi|x̂i = 1}.

3. Size adjusting (arbitrary step): By using a greedy algorithm,
add or remove one element from the set X at a time that has
the least contribution to D(X) to resize the X cardinality to
P .

The randomized rounding step is a standard procedure to produce
a binary solution and is widely used for designing and analyzing
approximation algorithms [19].

In feature selection problem the exact satisfaction of the cardi-
nality constraint may not be required. Since the cardinality of the
solution obtained at the step two of the SOSS algorithm is usually
close to P , here the size adjusting step is skipped and the solution X

achieved in step two of the algorithm is taken as the output. More-
over, it is noteworthy to mention that the role of the randomized
rounding step is more than generating a binary solution. From our
experiments we noticed that due to the randomized rounding step,
the algorithm produces very diverse solutions for P values close to
each other in the sense that the generated feature subsets have close
evaluation scores while having very few features in common. That
is, unlike the sequential subset selection methods in Definition 2,
where Si−1 ⊂ Si, here Xi−1 may hardly have many elements in
common with Xi. The diversity of the solutions increases the chance
that the SOSS algorithm finds feature subsets that are more compati-
ble with the subsequent classifier than the feature subset with simply
the highest mRMR score.

3. EXPERIMENTS

The evaluation of a feature selection algorithm is an intrinsically dif-
ficult task since there is no direct way to evaluate the goodness of a

Data set Arrhythmia NCI DBWorld Internet Adv.
Acronym ARR NCI DBW IAD
Data Type Continuous Discrete
# Features 278 9703 4702 1558
# Samples 370 60 64 3279
# Class Label 2 9 2 2

Table 1. Data sets descriptions

selection process in general. Thus, usually a selection algorithm is
scored based on the performance of its output, i.e., a feature subset,
under some specific classification (regression) system, interpreted as
a goal-dependent evaluation. However, this method obviously can
not evaluate the generalization power of the selection process on dif-
ferent induction algorithms. Thus, for evaluation of the feature selec-
tion algorithms, we train the different induction algorithms with the
selected features and take the average of their accuracies as the final
evaluation score. This method leads to a more classifier-independent
evaluation.

Some description of the five data sets we used are listed in Table
1. Except NCI data which can be found in Peng et al website [5],
the rest, Arrhythmia, DBWorld emails and Internet Advertisement,
are available on the UCI machine learning archive [20]. These data
sets have been widely used in previous feature selection studies [5],
[21]. The goodness of each feature set is evaluated with five clas-
sifiers including Support Vector Machine (SVM), Random Forest
(RF), Classification and Regression Tree (CART), Neural Network
(NN) and Linear Discriminant Analysis (LDA). To derive the classi-
fication accuracies, 10-fold cross-validation is performed except for
the NCI and DBW data sets where leave-one-out cross-validation is
used. To determine whether the difference between two algorithms
is significant, the p-values of the t-Test between two algorithms are
computed. Here p-value simply means the probability that one algo-
rithm is better than the other.

Three search strategies, Forward Selection (FS), Backward
Elimination (BE) and SOSS algorithm are compared with each
other in our experiments. Table 2 shows the results obtained for the
four data sets and five classifiers. The size of the selected subset
|X| and the classification accuracy in percentage are given for each
single experiment. The last column shows the p-values of the t-Test
between the SOSS and the BE or FS algorithms (always with the one
with the better performance). The larger the p-value, the higher the
confidence level is. The Ave. column reports the average of the clas-
sification accuracies for each algorithm. For most of the classifiers,
SOSS leads to a lower error-rate than the greedy methods.

In the case of IAD data set, SOSS and sequential methods
achieve almost the same classification accuracies. This is because
of the fact that the information matrix Q of the IAD data set has
small off-diagonal elements. That is, the IAD features are more
or less mutual independent. In this case, the greedy algorithms
can converge to a close to optimal solution. However, a significant
improvement can be seen for the NCI data where SOSS is better
than BE at the confidence level of 87%. NCI is probably the most
difficult (from the feature selection point of view) data set in our
experiment since it has around 10000 features yet very few training
samples. Since mutual information approximation for constructing
Q is computationally expensive, we first filter out 8000 of the NCI
features by simply eliminating those with small mutual informa-
tion values with class label. The dominant superiority of the SOSS
algorithm in this case is perhaps due to the fact that for the small
size data sets like NCI, mutual information approximation is pretty
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Classifiers SVM LDA CART RF NN Ave. p-val

ARR Data set
SOSS 40 81.9 38 77.9 35 79.3 38 85.5 70 74.8 79.86
FS 64 80.7 38 78.3 98 78.5 70 85.2 30 73.5 79.28 0.60
BE 67 80.7 39 78.3 97 78.1 68 84.7 43 73.8 79.14

NCI Data set
SOSS 40 80.0 38 75.0 35 43.3 38 86.7 70 78.3 72.65
FS 32 78.3 11 68.3 2 45.0 12 83.3 99 70.0 69.00 0.87
BE 26 76.6 11 68.3 2 45.0 13 85.0 31 71.7 69.33

DBW Data set
SOSS 127 95.3 10 93.7 8 86.0 14 92.2 108 93.8 92.18
FS 31 93.7 4 89.0 4 86.0 7 90.6 9 92.2 90.31 0.64
BE 110 93.7 6 89.0 4 82.8 29 92.2 9 92.2 90.00

IAD Data set
SOSS 40 96.6 38 95.9 35 96.2 38 97.3 70 97.2 96.64
FS 109 96.2 127 95.8 127 96.7 25 97.0 52 97.2 96.58 0.53
BE 22 96.3 163 95.9 121 96.1 109 97.2 148 97.4 96.58

Table 2. Comparison of SOSS algorithm with greedy search methods over different data sets. For each single experiment, the first reported
number is the optimal feature subset cardinality and the second is the classification accuracy achieved in that experiment.

noisy. Taking all these noisy mutual information terms together
into account, as in SOSS, may result in overall noise mitigation
(by assuming that mutual information values are the correct values
corrupted by independent white noise). Moreover, the NCI features
are highly dependent. Thus greedy search algorithms fail to find the
complicated relation between the features. The ARR and DBW data
sets also contain a very few samples but a large number of features.
As with the NCI data set, we first prune the features with close to
zero mutual information values. Interestingly, the same effect as in
NCI data appears for DBW and ARR data as well (since they both
have a very few samples) but at a bit lower confidence intervals.

4. CONCLUSION

In this work, we propose a new search strategy to select the opti-
mal feature subset. The feature subset selection problem is shown to
be equivalent to an instance of (0,1)-quadratic integer programming
problem. By using a second-order cone programming relaxation
for this combinatorial problem, we develop a convex search method
which can efficiently be solved for large-scale problems. The exper-
iments indicate that the proposed algorithm, outperforms the greedy
search methods especially in case of data sets with a large number
of features, yet a very few samples or when there are complicated
relations between features.
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