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ABSTRACT

We investigate connections between the generalized lasso and
the standard lasso problem. We show by an efficient direct
construction, that the generalized lasso problem is reducible
to a subspace constrained lasso. We then derive the dual of
the subspace constrained lasso. This dual problem can be pro-
jected to the dual of a standard lasso problem with a modified
dictionary. Finally, we discuss the application of these ideas
to image approximation using the 2D fused lasso.

Index Terms— Sparsity, lasso, regularized regression,
Lagrange dual

1. INTRODUCTION

The lasso problem [1] takes the form

min
w∈Rp

1/2‖x−Bw‖2 + λ‖w‖1, (1)

where λ > 0 is a regularization parameter. We callB ∈ Rn×p
the dictionary, the columns of B codewords and x the tar-
get vector. The `1 regularization in (1) encourages sparsity
in the solution w̃. The vector w̃ thus gives a new (feature
based) representation of x as a sparse linear combination of a
subset of the codewords. This has proved effective in sub-
sequent stages of processing (e.g., learning, classification).
Indeed, such representations have proven effective in appli-
cations ranging from image restoration [2, 3], face recogni-
tion [4, 5], object recognition [6], speech classification [7],
speech recognition [8], music genre classification [9], and
topic detection in text documents [10].

Several extensions to the lasso problem have also been
proposed. These retain aspects of the sparse representation
while encouraging other desired properties in the solution.
For example, the group lasso [11] performs sparse variable se-
lection on groups of variables and the elastic net [12] encour-
ages a grouping effect by weighting highly correlated vari-
ables similarly.

Recently a new form of the lasso has been introduced and
analyzed: the Generalized Lasso [13]. This is a least squares
problem with modified `1 regularization:

min
w∈Rp

1/2‖x−Bw‖22 + λ‖Dw‖1. (2)

Here D ∈ Rm×p is a given matrix of arbitrary form. The

idea is to select D, according to the application, so as to en-
courage the solution w̃ to exhibit desired structural properties.
A range of interesting applications of this idea have already
emerged including the fused lasso [14], trend filtering [15],
wavelet smoothing [16].

Our interest in (2) arises from its potential application to
spatially informed analysis of fMRI data. In this application,
D would be selected to ensure that the weight vector w̃ is
suitably spatially smooth. This and similar applications of
the generalized lasso have been of recent interest. For ex-
ample, recent work has examined the application of the 3D
fused lasso to EEG inverse problems [17] and its application
to classification and feature selection of CT images [18]. The
2D fused lasso has also been used in compressed sensing re-
construction to accelerate 3D MRI [19]. Some related appli-
cations involve using the generalized elastic net for decoding
cognitive states in fMRI [20] and using variants of group lasso
and weighted fusion for paradigm free mapping of fMRI [21].

Since fMRI data is high dimensional (≈ 105 voxels in the
whole brain and ≈ 103 voxels in a specific region of interest)
and often many subjects must be included in a full analysis,
the efficient solution of (2) becomes very important. The first
step towards obtaining efficient solution procedures is to fully
understand the generalized lasso (2) and its dual. This is the
principal objective of the current paper.

Tibshirani and Taylor [13] ask the important question
“when is a generalized lasso problem reducible to a standard
lasso problem?” They show that such a reduction is possible
when rank(D) = m. In this situation, it is also straight-
forward to obtain the dual of the generalized lasso problem.
The authors of [13] point out, however, that many interesting
generalized lasso problems have rank(D) < m. They then
examine a dual of the generalized lasso in this situation.

We show by direct construction that when rank(D) ≤ m
a generalized lasso problem is reducible to a lasso problem
with a subspace constraint. We give an efficient procedure
for this reduction requiring the one-time computation of two
singular value decompositions (SVD). When rank(D) = m,
the constraint is always satisfied and the reduced problem is a
lasso, in agreement with the result of [13]. A recent study [22]
focuses on solving the lasso problem with linear constraints
and develops efficient algorithms for this purpose. Hence this
reduction of the generalized lasso to a subspace constrained
lasso is of particular interest. We then obtain a dual of the
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constrained lasso problem and analyze the properties of its
solutions. We also show that this dual problem can be pro-
jected to the dual of a standard lasso problem with a modified
dictionary. This is interesting theoretically, but the worst case
complexity of the projection makes practical use unlikely. Fi-
nally, we give an example of solving the 2D fused lasso using
the proposed reduction.

2. REDUCTION TO A CONSTRAINED LASSO

For simplicity of presentation, we will assume that rank(B) =
n. The reduction also applies when rank(B) < n. We need
the following notation. Let D ∈ Rm×p have rank r ≤ m
and denote its Moore-Penrose inverse by D+, its range by
R(D), and its null space by N (D). So dimR(D) = r and
dimN (D) = p− r.

Let the columns of V0 ∈ Rp×(p−r) form an orthonormal
(ON) basis for N (D) and the columns of Q ∈ Rm×(m−r) be
basis forR(D)⊥ (the orthogonal complement ofR(D)).

Set B0 = BV0 ∈ Rn×(p−r) with dimR(B0) = q ≤ n.
Let the columns of U form an ON basis for R(B0)⊥ and set
x̂ = UTx ∈ Rn−q and B̂ = UTB ∈ R(n−q)×p.

The main result of this section is the following theorem.

Theorem 1. The generalized lasso (2) is equivalent to the
subspace constrained lasso,

min
u∈Rm

1/2‖x̂− B̂D+u‖22 + λ‖u‖1

s.t. QTu = 0.
(3)

If u? is the solution of (3), then

w? = V0B
+
0 x + (I − V0B+

0 B)D+u? (4)

is a solution of (2). Conversely, if w? is a solution of (2),
then u? = Dw? is a solution of (3).

To gain some insights into this result, set u = Dw and
write the problem (2) as:

min
w∈Rp,u∈Rm

1/2‖x−Bw‖22 + λ‖u‖1

s.t. Dw − u = 0.
(5)

For the reduction we must eliminate w from (5). Now every
w ∈ Rp can be uniquely written as w = w0 + wd with
w0 ∈ N (D) and wd ∈ N (D)⊥. Substitution into (5) yields:

1/2‖x−Bwd −Bw0‖22 + λ‖u‖1 (6)

and the constraint in (5) becomesDwd−u = 0. By selecting
w0 we can reduce the least squares cost without impacting
the regularization cost or the constraint. Since w0 can only
achieve points in the subspace B0 = BN (D) of R(B), an
optimal choice of w0 will cancel some part of the orthogonal
projection of (x − Bwd) onto B0. This depends on wd be-
cause Bwd can also have a component in the subspace B0:

think of this as crosstalk from wd into B0. To deduce an op-
timal choice of w0, let UB0

∈ Rn×q be a matrix with ON
columns that form a basis for B0 and write Bw0 = UB0

v0

for some v0 ∈ Rq . Using this representation, the fact that
UB0 has orthonormal columns, and some algebra, the objec-
tive (6) can be transformed into:

1/2‖(I − UB0
UTB0

)(x−Bwd)‖22
+ 1/2‖UTB0

(x−Bwd)− v0‖22 + λ‖u‖1 (7)

From (7) it is clear that v0 = UTB0
(x − Bwd) zeroes the

second term in (7) and reduces (6) to:

1/2‖(I − UB0U
T
B0

)(x−Bwd)‖22 + λ‖u‖1 (8)

Let the columns of U form an ON basis for B⊥0 . Since I −
UB0

UTB0
is orthogonal projection onto B⊥0 , we can write (I −

UB0
UTB0

) = UUT . Let x̂ = UTx and B̂ = UTB. With these
definitions, we can rewrite the objective (8) as

1/2‖x̂− B̂wd‖22 + λ‖u‖1 (9)

Here x̄ = UUTx is the projection of x onto B⊥0 and x̂ =
UTx ∈ Rn−q is the vector of coordinates of x̄ with respect to
the ON basis U . Think of x̄ as the component of x that can’t
be explained by w0. Similarly, B̄ = UUTB is the column-
by-column projection of the codewords in B onto B⊥0 and the
columns of B̂ = UTB ∈ R(n−q)×p give the coordinates of
the columns of B̄ with respect to the basis U . The degrees of
freedom in UB0

have been exploited by w0 and hence can be
removed from the dictionary when solving for wd.

The variabale wd can be eliminated as follows. wd and
u satisfy the constraint Dwd = u. Now when restricted
to N (D)⊥, D is a one-to-one mapping from N (D)⊥ onto
R(D) with Dwd = u. Hence wd = D+u. Substituting this
expression into (9) yields the equivalent objective:

1/2‖x̂− B̂D+u‖22 + λ‖u‖1 (10)

with constraint u ∈ R(D). Since the columns of Q form a
basis forR(D)⊥, (10) and its constraint can be written as (3).

When rank(D) = m, the constraint in (3) is always sat-
isfied. In this case, the generalized lasso reduces to a lasso in
agreement with the result in [13].

3. DUAL OF SUBSPACE CONSTRAINED LASSO

We now explore the dual of the subspace constrained lasso.
To keep the exposition general, let y ∈ Rk denote the tar-
get vector and C ∈ Rk×l denote the dictionary. Let the
columns of Q ∈ Rl×(l−r) be a basis for R(U)⊥ and require
that QTu = 0. The primal constrained lasso is then:

min
u∈Rl

1/2‖y − Cu‖22 + λ‖u‖1

s.t. QTu = 0
(11)
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If we ignore the constraint in (11), we obtain the associ-
ated lasso problem:

min
u∈Rl

1/2‖y − Cu‖22 + λ‖u‖1 (12)

To provide an important point of comparison, we quickly re-
view the Lagrangian dual of (12) (see e.g., [23–26]). This can
be expressed as [26]:

max
θ∈Rk

1/2‖y‖22 − λ2
/2‖θ − y/λ‖22

s.t. − 1 ≤ CTθ ≤ 1.
(13)

Here 1 ∈ Rl denotes the vector of all 1′s and the inequali-
ties in (13) are interpreted component-wise. In addition, the
solutions of (12) and (13) are related by

Cu? = y−λθ?, cTi θ
? ∈

{
{signw?i } if w?i 6= 0,

[−1, 1] if w?i = 0.
(14)

The inequality constraints in (13) specify a set F of dual fea-
sible points: θ ∈ F ⇔ cTi θ ≤ 1, i = 1, . . . , l. F is a
nonempty (0 ∈ F), closed, convex polyhedron. The objec-
tive of (13) seeks a θ ∈ F that is closest to y/λ. For every
y ∈ Rk and λ > 0, (13) has a unique solution θ?(y, λ) - this
is a property of projection onto a closed convex set [27].

Now consider the Lagrangian dual of problem (11). Set
z = y − Cu and rewrite (11) as:

min
z∈Rk,u∈Rl

1/2‖z‖22 + λ‖u‖1

s.t. QTu = 0

y − Cu− z = 0

(15)

The corresponding Lagrangian for this problem is

L(z,u,v,σ, τ ) =

1/2 zT z + λ‖u‖1 + σT (y − Cu− z) + τT (QTu).
(16)

Minimizing the Lagrangian with respect to z gives z = σ,
and with respect to u gives:

cTi σ − qTi τ ∈

{
{sign(ui)λ} if ui 6= 0

[−λ, λ] if ui = 0
(17)

where ci (resp. qTi ) is i-th column (resp. row) of C (resp.
Q). This in turn implies λ‖u‖1 − (σTC − τTQT )u = 0
and the set of constraints −λ1 ≤ CTσ − Qτ ≤ λ1. Let
θ = σ/λ and ν = −τ/λ. Then the Langragian simplifies
to 1/2‖y‖22 − λ2

/2‖θ − y/λ‖22 and the constraints to: −1 ≤
CTθ +Qν ≤ 1.

Putting all of this together yields a dual of (11):

max
θ∈Rk,ν∈Rl−r

1/2‖y‖22 − λ2
/2‖θ − y/λ‖22

s.t. − 1 ≤ CTθ +Qν ≤ 1
(18)

with the solutions of problems (11) and (18) related by

Cu? = y − λθ?

cTi θ
? + qTi ν

? ∈
{
{signu?i } if u?i 6= 0,

[−1, 1] if u?i = 0.

(19)

The dual variable in (18) is the composite vector (θ,ν)
and the constraint can be written in terms of this variable as

− 1 ≤
[
C
QT

]T [
θ
ν

]
≤ 1 (20)

This augments the dictionary by adjoining QT to the rows of
C. Modulo this modification, the objective and constraint in
(18) are similar to those in (13). The key difference is that
in (18) the objective only depends on a subset of the dual
coordinates (θ).

Let F denote the dual feasible points of the unconstrained
lasso (12). This is a polyhedron in Rk. Similarly, let Fc de-
note the dual feasible points of (11). This is a polyhedron in
Rk+l−r. F can be embedded in Rk+l−r by padding θ ∈ F
with l − r zeros, i.e., θ 7→ (θ,0). Denote this embeded
set by Fe. Under this embedding, Fe ⊆ Fc with equality
when r = l. So adding a constraint to the lasso enlarges
the set of dual feasible points. In general, the constrained
lasso can’t achieve the same minimal objective value as the
associated unconstrained lasso. Hence the dual of the con-
strained problem compensates by enlarging the dual feasible
set. This enables it to achieve the same optimum value as the
(constrained) primal problem. We see this in (18) where the
extra coordinates ν in the dual variable give the opportunity
to expand the set of dual feasible points beyond that of the un-
constrained lasso. Clearly, the ν of a dual solution need not
be unique (see also [13]), but θ is unique.

Lemma 1. For each y ∈ Rk and λ > 0, the dual problem
(18) has a solution. In addition, the θ component is unique,
i.e., if (θ̃j , ν̃j) are solutions, j = 1, 2, then θ̃1 = θ̃2.

Proof. Fc is nonempty, convex and closed. The linear map-
ping (θ,ν) 7→ θ projects Fc to a nonempty closed convex set
Fp in Rk. We seek the point in Fp that is closest to y/λ. By
standard results, [27, §3.1], there is a unique point θ̃ in the
projected set that is closest to y/λ. Since θ̃ is in the projected
set, there exists ν̃ such that (θ̃, ν̃) ∈ Fc and this point is a
solution of the dual.

4. PROJECTION OF THE DUAL

By (18), the polyhedron Fc of dual feasible points depends
only on the augmented dictionary through the inequality con-
straints (20). It does not depend on y or λ. In addition, only
the θ component of the dual variable plays a role in the ob-
jective function. By variable elimination in linear inequalities
(e.g., via Fourier-Motzkin elimination), the ν component can
be eliminated and only the θ component retained.
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Lemma 2. Assume r < m. Then there exists an integer d ≥
1 and a matrix P ∈ Rd×l such that Fp is the set of points
θ ∈ Rk satisfying −1 ≤ PCTθ ≤ 1.

Proof. Use Fourier-Motzkin elimination [28].

By projecting Fc to Fp, we project (18) to:

max
θ∈Rk

1/2‖y‖22 − λ2
/2‖θ − y/λ‖22

s.t. − 1 ≤ PCTθ ≤ 1
(21)

We call (21) the projected dual. Let A = CPT ∈ Rk×d
denote the dictionary of the projected dual. The projected
dual is the dual of the standard lasso:

min
t∈Rd

1/2‖y −At‖22 + λ‖t‖1 (22)

This interesting result says that a subspace constrained
lasso can be transformed into a standard lasso problem by
“filtering” the dictionary C via PT . Unfortunately, in gen-
eral this will remain purely of theoretical interest since in the
worst case, variable elimination in linear inequalities has ex-
ponential complexity. So in the worst case, during the process
of variable elimination the size of the dictionary grows expo-
nentially.

5. EXAMPLE: 2D FUSED LASSO

The Fused Lasso is a special case of (2). In the 1D fused
lasso [14], D forms the differences in adjacent entries of w
and rank(D) = m. So the 1D fused lasso reduces to a lasso.
In the 2D fused lasso, x represents an image rearranged into
a vector and D forms the horizontal and vertical differences
at each pixel. If the image is n×n, then D is m = 2(n2−n)
by p = n2 and won’t have full row rank for n > 2. Consider
the special case when B = I (“signal approximation”). Let
D have rank r ≤ m. To compute the reduction to a subspace
constrained lasso we first find a full SVD

D =
[
UD XD

] [ΣD 0
0 0

] [
VD YD

]T
.

YD is p × (p − r) and forms an ON basis for N (D). XD is
m× (m−r) and forms an ON basis forR(D)⊥. The Moore-
Penrose inverse is D+ = VDΣ−1D UTD . We can take V0 = YD.
Then R(BV0) = R(YD) and we can take U = VD. So the
new dictionary is B̂D+ = UTBD+ = Σ−1D UTD and x̂ =
V TD x. We need Q to be basis for R(D)⊥. So set Q = XD.
This yields the 2D fused subspace constrained lasso:

min
u∈Rm

1/2‖x̂− Σ−1D UTDu‖22 + λ‖u‖1

s.t. XT
Du = 0.

(23)

Fig. 1 displays an example solved using this reduction.
The original binary image (top left) is 32 × 32. Normal
N(0, 0.12) noise is added to the image (top right). We applied

Fig. 1. Example: 2D fused lasso solved using a subspace con-
strained lasso representation. Axes are image pixel indexes.
Further details are in the text.

the reduction procedure, then solved the subspace constrained
lasso (we used CVX [29]). The solution (λ = 1) is shown in
Fig. 1 (bottom).

6. CONCLUSION

Our reduction results on the generalized lasso add additional
understanding to this new and potentially useful sparse re-
gression problem. We have shown that the generalized lasso
is easily reducible to a subspace constrained lasso. The main
computations required for this reduction are two singular
value decompositions. Moreover, recent work [22] has al-
ready put in place algorithms for the solution of constrained
lasso problems. Current algorithms to solve the constrained
lasso include the path algorithm in [13] and the iterative
non-linear conjugate gradient algorithm in [30] and general
convex program solvers. At the very least the reduction re-
ported here provides an alternative approach for solving the
generalized lasso problem. In addition, the dual of the sub-
space constrained lasso can be projected to the dual problem
of a standard lasso with a modified dictionary. Thus by mod-
ifying the dictionary, a subspace constrained lasso can be
equivalently formulated as a lasso problem. By extension,
the generalized lasso can also be equivalently formulated
as a lasso problem. This is an interesting theoretical result.
Unfortunately, the worst case complexity of the required con-
struction is exponential. So for now, this second result is
principally of theoretical interest. Finally we note that while
finalizing this accepted paper we came across the very recent
manuscript [31] which also considers equality constrained
lasso problems.
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