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ABSTRACT

We consider the problem of clustering a set of high-
dimensional data points into sets of low-dimensional
linear subspaces. The number of subspaces, their dimen-
sions, and their orientations are unknown. We propose
a simple and low-complexity clustering algorithm based
on thresholding the correlations between the data points
followed by spectral clustering. A probabilistic perfor-
mance analysis shows that this algorithm succeeds even
when the subspaces intersect, and when the dimensions
of the subspaces scale (up to a log-factor) linearly in
the ambient dimension. Moreover, we prove that the
algorithm also succeeds for data points that are subject
to erasures with the number of erasures scaling (up to a
log-factor) linearly in the ambient dimension. Finally, we
propose a simple scheme that provably detects outliers.

Index Terms— subspace clustering, spectral cluster-
ing, principal angles, outlier detection, erasures

1. INTRODUCTION

Suppose we are given a set X of N data points in Rm,
and assume that X = X1 ∪ ... ∪ XL ∪ O, where the
points in Xl lie in a (low-dimensional) linear subspace Sl
of Rm, andO denotes a set of outliers. The association of
the data points with the setsXl andO, the number of sub-
spaces L, their dimensions dl, and their orientations are
all unknown. We consider the problem of clustering the
data points, i.e., of finding the assignments of the points
in X to the sets Xl and O. Note that once these asso-
ciations have been identified, it is straightforward to ex-
tract the subspaces Sl through principal component anal-
ysis (PCA). The problem we consider is known as sub-
space clustering and has applications in, e.g., unsuper-
vised learning, image processing, disease detection, and,
in particular, computer vision, see, e.g., [1] and refer-
ences therein. Numerous approaches to subspace cluster-
ing are known. We refer to [1] for an excellent overview.

Spectral clustering (SC) methods (see [2] for an in-
troduction) have found particularly widespread use. At
the heart of SC lies the construction of an adjacency ma-

trix A ∈ RN×N , with the (i, j)th entry of A measuring
the similarity between the data points xi,xj ∈ X . A
typical similarity measure is, e.g., e−dist(xi,xj), where
dist(·, ·) is some distance measure [1]. Taking G to be
the graph with adjacency matrix A, the association of
the points in X to the sets Xl (outliers are typically re-
moved in a preprocessing step) is obtained by finding
the connected components in G, accomplished via sin-
gular value decomposition of the Laplacian of G fol-
lowed by k-means clustering [2]. Whether a SC algo-
rithm, or for that matter, any clustering algorithm, suc-
ceeds depends on the number of subspaces L, their di-
mensions and relative orientations, and the number of
points in each subspace. Analytic results on the perfor-
mance of SC methods are scarce. A notable exception
is the sparse subspace clustering (SSC) algorithm, re-
cently introduced by Elhamifar and Vidal [3, 4]. At the
heart of this algorithm lies a clever construction of A that
uses ideas from sparse signal recovery. Soltanolkotabi
and Candès [5] presented an elegant (geometric function)
analysis of SSC and proved that SSC succeeds under
very general conditions. Most importantly, it is shown
in [5], using a probabilistic analysis, that SSC succeeds
even when the subspaces Sl intersect, which means the
Sl do not need to be independent or disjoint1. Moreover,
Soltanolkotabi and Candès [5] provide a clever extension
of SSC that provably detects outliers. To construct the
adjacency matrix A SSC requires the solution of N `1-
minimization problems, each in N unknowns; this can
pose significant computational challenges for large data
sets.

Contributions: We introduce an algorithm, termed
thresholding based subspace clustering (TSC), which
applies spectral clustering to an adjacency matrix A
obtained by thresholding correlations between the data
points in X . TSC is shown to succeed even when the

1The linear subspaces Sl are called disjoint if Sl ∩ Sk = {0} for
all l 6= k, and independent if dim(⊕lSl) =

∑
l dl, where ⊕ stands

for direct sum. An independent set of subspaces is disjoint, but the
converse is not necessarily true. Two subspaces are said to intersect if
Sl ∩ Sk 6= {0}.
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subspaces intersect, and when their dimensions scale
(up to a log-factor) linearly in the ambient dimension.
While SSC shares these desirable properties, TSC is
computationally much less demanding, as the construc-
tion of the adjacency matrix A in the TSC algorithm
requires the computation of N2 inner products followed
by thresholding only. Moreover, the performance anal-
ysis of TSC, thanks to the algorithm’s simplicity, does
not need sophisticated mathematical tools; it is based on
fairly standard concentration results for order statistics
only.

In practical applications the data points to be clus-
tered are often subject to erasures, caused by, e.g.,
scratches on images. The literature is essentially void
of corresponding analytic performance results. We prove
that TSC succeeds even when the data points in X are
subject to massive erasures. Specifically, the number of
erasures is allowed to scale (up to a log-factor) linearly
in the ambient dimension. We finally propose a simple
scheme that provably detects outliers, and we corroborate
our findings by numerical results. Proofs of the theorems
in this paper, results on clustering noisy data points, and
numerical results for real data sets are provided in [6].

We finally note that Lauer and Schnorr [7] also apply
SC to an adjacency matrix constructed from correlations
between data points, albeit, without thresholding. More-
over, no analytic performance results are available for the
algorithm in [7].

Notation: We use lowercase boldface letters to de-
note (column) vectors, e.g., x, and uppercase boldface
letters to designate matrices, e.g., A. For the vector
x, [x]q and xq denote the qth entry and for the ma-
trix A, Aij stands for the entry in the ith row and
jth column. The spectral norm of A is ‖A‖2→2 :=
max‖v‖2=1 ‖Av‖2, its Frobenius norm is ‖A‖F :=√∑

i,j(Aij)2, and I denotes the identity matrix. The

superscript T stands for transposition and log(·) for the
natural logarithm. The cardinality of the set T is |T |.
We write N (µ,Σ) for a Gaussian random vector with
mean µ and covariance matrix Σ. The unit sphere in Rm
is Sm−1 :={x ∈ Rm : ‖x‖2 = 1}.

2. THE TSC ALGORITHM
The formulation introduced below assumes that outliers
have already been removed from X , e.g., through the
outlier detection scheme in Sec. 5. Given a set of data
points2 X and the parameter q (the choice of q is dis-

2We assume the data points to be either normalized or to be of com-
parable norm. This assumption is not restrictive as the data points can
be normalized prior to clustering.

cussed below), the TSC algorithm consists of the follow-
ing steps:

Step 1: For every xj ∈ X , identify the set Tj ⊂
{1, ..., N} \ j of cardinality q such that

|〈xj ,xi〉| ≥ |〈xj ,xp〉| for all i ∈ Tj and all p /∈ Tj (1)

and let zj ∈ RN be the vector with ith entry |〈xj ,xi〉| if
i ∈ Tj , and 0 if i /∈ Tj . Construct the adjacency matrix
according to Aij = |[zj ]i|+ |[zi]j |.

Step 2: Estimate the number of subspaces using
the eigengap heuristic [2] according to L̂ =
arg maxi=1,...,N−1(λi+1 − λi), where λ1 ≤ λ2 ≤ ... ≤
λN are the eigenvalues of the normalized Laplacian of
the graph with adjacency matrix A.

Step 3: Apply normalized SC [2] to (A, L̂).

TSC is said to succeed if the TSC subspace detection
property according to the following definition holds.

Definition 1. The TSC subspace detection property holds
for X = X1 ∪ ... ∪ XL and adjacency matrix A if

i. Aij 6= 0 only if xi and xj belong to the same set Xl
and if

ii. for all i = 1, ..., N , Aij 6= 0 for at least q pairs xi
and xj that belong to the same set Xl.

The idea behind Def. 1, inspired by the `1 subspace
detection property introduced in [5], is the following. If
the TSC subspace detection property holds, then each
node in the Graph G with adjacency matrix A is con-
nected to at least q other nodes, all of which correspond
to points in the same subspace. In the SC step, the as-
signments of the points to clusters are then determined
through identification of the connected components ofG.
We will see in the numerical results section, that even
if the TSC subspace detection property does not hold
strictly, but the Aij for pairs xi,xj belonging to differ-
ent subspaces are sufficiently small, SC can still yield the
correct result.

Assumptions for performance analysis: For expo-
sitional convenience we take all subspaces to have equal
dimension d, and let the number of points in each of the
subspaces be n, (i.e., |Xl| = n, l = 1, ..., L).

Choice of q: Choosing q too small/large will lead to
over/under-estimation of the number of subspaces L. A
sensible choice is to take q to be a fraction of n. This
motivates setting q = n/ρ, where ρ ≥ 1. The results we
obtain will ensure that, under certain conditions, the TSC
subspace detection property holds, provided that ρ is not
too small, while the specific choice of ρ will not matter.
Moreover, numerical results in [6] indicate that TSC is
not sensitive to the specific choice of q.
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3. DETERMINISTIC SUBSPACES
In order to understand the impact of the relative orien-
tations of the subspaces on the performance of TSC, we
take the subspaces to be deterministic and the points in
the subspaces to be random. W.l.o.g. we represent the
points in Sl as x

(l)
j = U(l)a

(l)
j , j = 1, ..., n, where

a
(l)
j ∈ Rd and U(l) is a basis for the d-dimensional

subspace Sl. We present two results that depend on dif-
ferent notions of affinity between subspaces, namely
affp(Sk, Sl) :=

∥∥∥U(k)TU(l)
∥∥∥
2→2

and [5, Def. 2.6]

aff(Sk, Sl) :=
∥∥∥U(k)TU(l)

∥∥∥
F
/
√
d, both of which can

be interpreted as measures of the relative orientations
of the subspaces. Throughout this section, we as-
sume that the U(l) are orthonormal bases, and hence
0 ≤ aff(Sk, Sl) ≤ affp(Sk, Sl) ≤ 1. The relation
between the two affinity notions is brought out by not-
ing that affp(Sk, Sl) = cos(θ1) while aff(Sk, Sl) =√

cos2(θ1) + ...+ cos2(θd)/
√
d, where θ1 ≤ ... ≤ θd

are the principal angles between Sk and Sl.

Theorem 1. Suppose n = ρq data points are chosen
in each of the L subspaces at random according to
x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d.

N (0, (1/d)I) and ρ ≥ 10/3. If

max
k 6=l

affp(Sk, Sl) ≤ c1
√

log ρ√
logL+ log n

, (2)

then the TSC subspace detection property holds with
probability at least 1 − Lne−c2n − L

(L−1)3n2 , where c1
and c2 are absolute constants satisfying 0 < c1, c2 < 1.

Thm. 1 states that TSC succeeds with high proba-
bility if maxk 6=l affp(Sk, Sl) is sufficiently small. Intu-
itively, we expect that clustering becomes easier when
the number of data points in each subspace increases.
Thm. 1 confirms this intuition as, for fixed d, q, and L,
the right hand side (RHS) of (2) increases in ρ; more-
over, the probability of success in Thm. 1 increases in
n. If the number of subspaces, L, increases, for fixed
d, q and n, clustering intuitively becomes harder and, in-
deed, the RHS of (2) is seen to decrease in L. Note
that Thm. 1 does not apply to subspaces that intersect as
affp(Sk, Sl)=1 if Sk and Sl intersect and the RHS of (2)
is strictly smaller than 1. We next present a result analo-
gous to Thm. 1 that applies to intersecting subspaces.
Theorem 2. Suppose n = ρq data points are cho-
sen in each of the L subspaces at random according to
x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. uni-

form on Sd−1 and ρ ≥ 6. If
max
k 6=l

aff(Sk, Sl) ≤
1

13 logN
, (3)

then the TSC subspace detection property holds with
probability at least 1 − 3/N − Ne−cn, where c is an
absolute constant.

The interpretation of Thm. 2 is analogous to that of
Thm. 1 with the important difference that the RHS of (3),
as opposed to the RHS of (2), decreases, albeit slowly, in
n (recall that N = Ln). For SSC a result in the flavor of
Thm. 2 was reported in [5, Thm. 2.8].

4. ERASURES
In practical applications the data points to be clustered
are often corrupted by erasures, e.g., images that need
to be clustered could exhibit scratches. Understanding
the impact of erasures on clustering performance is ob-
viously of significant importance. The literature seems,
however, essentially void of corresponding analytic re-
sults. In the deterministic subspace setting such results
will necessarily depend on the specific orientations of the
subspaces. In the following, we therefore take both the
orientations of the subspaces and the points in each sub-
space to be random. Specifically, we take the entries of
the U(l) ∈ Rm×d to be i.i.d. N (0, 1/m), which ensures
that each of the U(l) is approximately orthonormal with
high probability.

Theorem 3. Suppose n = ρq data points are chosen
in each of the L subspaces at random according to
x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d.

N (0, (1/d) I) and ρ ≥ 10/3. Assume that in each
xj up to s entries (possibly different for each xj) are
erased, i.e., set to 0. Let the entries of each matrix
U(l) ∈ Rm×d be i.i.d. N (0, 1/m). If m ≥
c2
√
logN√
log ρ

(
d log

(
c4
√
logN√
log ρ

)
+s log

(
me
2s

)
+logL

)
+c0s,

then the TSC subspace detection property holds with
probability at least 1− Lne−c3n − L

(L−1)3n2 − 4e−c1m,

where c0, c1, c2, c3, c4 > 0 are absolute constants.

Strikingly, Thm. 3 shows that the number of erasures
is allowed to scale (up to a log-factor) linearly in the am-
bient dimension.

For the fully random data model used in Thm. 3 we
can furthermore conclude that TSC succeeds with high
probability even when the dimensions of the subspaces
scale (up to a log-factor) linearly in the ambient dimen-
sion. Drawing such a conclusion from Thm. 1 or Thm. 2
seems difficult as the relation between m, d, and L is
implicit in the affinity measures. These findings should,
however, be taken with a grain of salt as the fully random
subspace model ensures that the subspaces are approx-
imately disjoint with high probability. In the erasure-
free case, i.e., for s = 0, a result for SSC, analogous
to Thm. 3, was reported in [5, Thm. 1.2].
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5. DETECTION OF OUTLIERS
Outliers are data points that do not lie in one of the low-
dimensional subspaces Sl and have no low-dimensional
linear structure. Here, this is modeled by assuming ran-
dom outliers distributed uniformly on the unit sphere
of Rm. The outlier detection criterion we employ
does not need knowledge of the number of outliers
N0 and is based on the following observation. The
maximum inner product between an outlier and any
other point in X is, with high probability, smaller than
c
√

logN/
√
m. We therefore classify xj as an outlier

if maxp 6=j |〈xp,xj〉| < c
√

logN/
√
m. The maximum

inner product between any point xj ∈ Xl and the points
in Xl \ xj is unlikely to be smaller than 1/

√
d. Hence an

inlier is unlikely to be misclassified as an outlier if d/m
is sufficiently small.

Theorem 4. Suppose n = ρq data points are cho-
sen in each of the L subspaces at random according to
x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. uni-

form on Sd−1 and each U(l) is orthonormal. Let the N0

outliers be i.i.d. uniform on Sm−1. Declare xj ∈ X
to be an outlier if maxp 6=j |〈xp,xj〉| <

√
6 logN/

√
m.

Then, with N = Ln+N0, provided that
d

m
≤ 1

6 logN
(4)

with probability at least 1−2N0/N
2−nLe− log(π/2)(n−1),

every outlier is detected and no point in a subspace is
misclassified as an outlier.

Since (4) can be rewritten as N0 ≤ e
m
6d − Ln, we

can conclude that outlier detection succeeds, even if the
number of outliers scales exponentially in m/d, i.e., if d
is kept constant, exponentially in the ambient dimension!
Note that this result does not make any assumptions on
the orientations of the subspaces Sl. The outlier detection
scheme proposed in [5] allows to identify outliers under a
very similar condition. However, it requires the solution
of N `1-minimization problems, each in N unknowns,
while the algorithm proposed here needs to compute N2

inner products followed by thresholding only.

6. NUMERICAL RESULTS
We use the performance measures employed in [5, 8].
The clustering error (CE) is defined as the ratio be-
tween the number of misclassified data points and the
total number of points in X . The error in estimating
the number of subspaces L is denoted as EL and takes
on the value 0 if the estimate is correct, else it is equal
to 1. The feature detection error (FDE) is defined as
1
N

∑N
i=1 (1− ‖bxi‖2/‖bi‖2) , where bi is the ith col-

umn of the adjacency matrix A and bxi
is the vector
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Fig. 1. Errors as a function of the dimension of the sub-
spaces, d, on the vertical and ρ on the horizontal axis.
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Fig. 2. CE as a function of the dimension of the sub-
spaces, d, on the vertical and ρ on the horizontal axis.

containing the entries of bi corresponding to the sub-
space xi lives in. The FDE measures to which extent
points from different subspaces are connected in G and
is equal to zero if the TSC subspace detection property
holds.

Influence of d, ρ, and erasures: We generate L =
15 subspaces in R50 at random, by choosing the corre-
sponding U(l) uniformly at random from the set of or-
thonormal matrices in Rm×d, and vary the number of
points n = dρ in each subspace. The points in the sub-
spaces are chosen at random according to the probabilis-
tic model in Thm. 3. The results depicted in Fig. 1 show,
as indicated in Sec. 1, that TSC can, indeed, succeed
even when the TSC subspace detection property does
not hold. Finally, we perform the same experiment, but
erase the entries of xi with indices in Di, where Di is
chosen independently for each xi and uniformly from
{D ⊆ {1, ...,m} : |D| = s}. The results summarized in
Fig. 2 show that TSC succeeds, even when a large frac-
tion of the entries is erased.

Detection of outliers: In order to allow for a com-
parison with the outlier detection scheme proposed in
[5], we perform our experiment with the same parame-
ters as used in [5, Sec. 5.2]. Specifically, we set d = 5,
vary m = {50, 100, 200}, and generate L = 2m/d sub-
spaces and n = 5d points in each subspace at random as
in the previous paragraph. Each of the N0 = Ln out-
liers is chosen i.i.d. uniformly on Sm−1. Note that we
have as many outliers as inliers. We find a misclassifica-
tion error probability of {0.017, 1.510−4, 2.510−5} for
m = {50, 100, 200}, respectively. Similar performance
was reported for the scheme proposed in [5].
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