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ABSTRACT
Unions of subspaces have recently been shown to provide
a compact nonlinear signal model for collections of high-
dimensional data, such as large collections of images or
videos. In this paper, we introduce a novel data-driven al-
gorithm for learning unions of subspaces directly from a
collection of data; our approach is based upon forming mini-
mum `2-norm (least-squares) representations of a signal with
respect to other signals in the collection. The resulting repre-
sentations are then used as feature vectors to cluster the data
in accordance with each signal’s subspace membership. We
demonstrate that the proposed least-squares approach leads to
improved classification performance when compared to state-
of-the-art subspace clustering methods on both synthetic and
real-world experiments. This study provides evidence that
using least-squares methods to form data-driven represen-
tations of collections of data provide significant advantages
over current methods that rely upon sparse representations.

Index Terms— Subspace clustering, unions of subspaces,
least-squares methods, sparsity, sparse recovery methods

1. INTRODUCTION

Every minute, terabytes of video and image data are uploaded
to the internet. Video and image data are expected to account
for an estimated 85% of all internet traffic by 2016 [1]. To
analyze, process, and eventually store such massive collec-
tions of high-dimensional data, novel methods that go be-
yond current compression schemes are essential [2]. One
powerful approach used to tackle this problem, is to learn a
model that captures the collection’s low-dimensional geomet-
ric structure, rather than forming independent representations
for each signal in the collection.

Despite the power of this type of geometric approach,
in large collections of heterogenous data (e.g., images col-
lected under different illumination conditions, viewpoints,
etc.), finding a global model that compactly represents the
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relevant geometric structures across an entire dataset is of-
ten not possible. Thus, an alternative to learning a global
model is to instead learn a hybrid model or a union of low-
dimensional geometric structures (or subspaces) that charac-
terize the structure present in the ensemble.

1.1. Unions of subspaces and subspace clustering

Recently, unions of subspaces have been shown to provide a
compact geometric model for a wide range of datasets, and
in particular, for collections of visual data acquired from the
same scene or object but different viewing/lighting condi-
tions. For example, collections of images of objects under
different illumination conditions [3], motion trajectories of
point-correspondences arising from different objects [4],
and a wide range of structured sparse and block-sparse sig-
nals [5–8], can all be well-approximated by a union of low-
dimensional subspaces or a union of affine hyperplanes [9].

Unions of subspaces provide a natural extension to single
subspace models; however, providing an extension of sub-
space estimation techniques such as PCA to learn multiple
subspaces is extremely challenging. This is due to the fact that
subspace clustering—or clustering points in accordance with
their subspace membership—and subspace estimation must
be performed jointly. Nevertheless, if one can accurately de-
termine which points lie within the same subspace, then sub-
space estimation becomes trivial.

1.2. Sparse subspace clustering

Recently, Elhamifar et al. [10] introduced a state-of-the-art
algorithm for subspace clustering, known as sparse subspace
clustering (SSC). This method is based upon forming sparse
representations of points (or vectors) in the ensemble with re-
spect to the remaining points in the ensemble (see Sec. 2 for
the details). The motivation underlying this approach is that
the sparse representation of a point under consideration will
consist of other points in the same subspace.

After computing a sparse representation for each point in
the ensemble, each sparse coefficient vector is placed into a
row of a subspace affinity matrix. The subspace affinity ma-
trix can be interpreted as a graph, where the (i, j) entry of the
matrix represents the edge between the ith and jth point in
the ensemble; the strength of each edge represents the likeli-
hood that two points live in the same subspace. After forming
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a symmetric affinity matrix, spectral clustering is then per-
formed on the graph Laplacian [11] of the affinity matrix to
obtain labels (indicating the subspace membership) for all the
points in the ensemble.

1.3. Contributions

While sparse representations result in affinity matrices that
contain a small number of edges in the graph linking signals
from different subspaces, recovering subspace clusters from
the affinity matrices obtained via SSC is challenging due to
the fact that sparse representations often produce weakly con-
nected components between signals in the same subspace.

To circumvent this issue, we propose a novel method for
subspace clustering that is based on forming minimum `2-
norm (least-squares) representations1 from the data instead of
sparse representations. We show that the resulting represen-
tations tend to be dense (i.e., the energy is spread amongst
all nonzero coefficients) and thus, such representations serve
to produce affinity matrices that have more tightly connected
components than those obtained via SSC. For this reason,
spectral clustering algorithms operating on the affinity ma-
trices obtained from least-squares representations can recover
the subspace clusters more reliably than SSC.

Our specific contributions are as follows. First, we in-
troduce a novel algorithm for forming data-driven represen-
tations that employs a thresholded pseudoinverse operator to
obtain least-squares representations of points in an ensemble
of data (Sec. 3). Following this, we study the performance
of spectral clustering-based approaches to subspace learning
for our proposed method, sparse subset selection (SSC) with
OMP [12], and nearest neighbor (NN) subset selection from
ensembles living on unions of subspaces (Sec. 4). We show
that our proposed method outperforms both SSC and NN in
the noisy setting and show that our method results in superior
classification performance on real data consisting of images
of faces under different illumination conditions.

2. BACKGROUND

In this section, we provide background on subspace clustering
and introduce the SSC algorithm in [10].

2.1. Sparse subspace clustering

The goal of subspace clustering is to segment a collection of
data in accordance with the subspace membership of every
point in the dataset. Formally, if we have a collection of d
vectors in Rn, contained in the columns of the matrix Y ∈
Rn×d, our goal is to determine the number p and dimension
k of each of the subspaces present in the ensemble and then
label each data point in accordance with the subspace it lives
on. In other words, we wish to associate a label {1, . . . , p}
for each vector yi ∈ Rn, for i = 1, . . . , d.

1We replace the `1 norm in (1) with the `2 norm to obtain the least-
squares representation of the data.

Recently, Elhamifar et al. [10] proposed a method known
as sparse subspace clustering (SSC), which achieves state-of-
the-art performance on a number of subspace clustering tasks,
including motion segmentation and clustering images of faces
under different illumination conditions. The authors demon-
strate that by forming a sparse representation of a single point
with respect to the remaining points in the ensemble, the re-
sulting representation will consist of points that lie in the same
subspace.

To be precise, SSC proceeds by first solving the following
`1-norm minimization problem for each point in Y,

c∗i = argmin
c∈Rd

‖c‖1 subject to yi = Y(i)c, (1)

where Y(i) is a matrix containing all vectors in Y except the
ith vector, yi. After solving (1), each d-dimensional coeffi-
cient vector c∗i is placed into the ith row of an affinity matrix
C. Finally, spectral clustering [11] is performed on the graph
Laplacian of W = |C|+ |CT |. Subsequent analysis provided
conditions for which `1-norm minimization [13] and orthog-
onal matching pursuits (OMP) [12] are guaranteed to provide
sets of points belonging to the same subspace.

3. DENSE SUBSPACE CLUSTERING

In this section, we propose an alternative to sparsity-based
subspace clustering, which relies on forming least squares
representations of the data rather than sparse ones.

3.1. Motivation

The motivation underlying SSC is that sparse representations
of the data are likely to contain contributions from other
points that live in the same subspace. When a representation
only contains contributions from other points in the same
subspace, then we say that exact feature selection (EFS) oc-
curs. EFS is clearly important for providing guarantees for
accurate subspace recovery. However, there are many settings
where EFS occurs for a significant number of points in the
ensemble but graph clustering methods still fail to segment
the data appropriately. This is due to the fact that in many
cases, affinity matrices formed via SSC produce weakly con-
nected components in addition to outliers that are typically
placed into their own cluster.

Instead of forming a sparse representation of the data as in
SSC [10], we propose the use of least-squares representation
of points to form a subspace affinity matrix for the ensemble.
The main motivation behind using least-squares representa-
tions is that they are known to provide dense representations
and thus, vectors that live close to one another in the same
subspace will all use one another in their least-squares rep-
resentations. In contrast, sparse representations by definition
would select only one of these points to be included in the rep-
resentation. By effectively increasing the density of the rep-
resentation within a particular subspace cluster, this serves to
create a more tightly connected cluster in the subspace affinity
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Algorithm 1 : Dense subspace clustering (DSC)
Input: Set of d vectors Y ∈ Rn×d, number of subspace clus-

ters p, and singular value threshold τ .
Output: A set of labels L = {`1, . . . , `d} for each point in

the dataset, where `i ∈ {1, . . . , p},∀i.
1: For each vector yi ∈ Y , compute the dense represen-

tation c̄i according to c̄i = Y−τ(i) yi, where Y−τ(i) is the
thresholded pseudoinverse of Y(i) defined in (2).

2: Stack the dense representations c̄i into the columns of the
transpose of the affinity matrix CT and perform spectral
clustering on the graph Laplacian of W = |C|+ |CT | to
produce a set of d labels L.

matrix that is easier to segment with standard graph clustering
methods. We show that forming least-squares representations
of the data not only provides a higher density of edges within
a cluster but also results in high rates of EFS (small num-
ber of edges between points in different subspaces). Thus,
least-squares representations provide an appropriate balance
between the density of the representation and produce sample
sets that contain exact features; these two properties result in a
more robust subset selection strategy for subspace clustering.

3.2. Dense subspace clustering algorithm

We now detail our proposed method, which we refer to as
dense subspace clustering (DSC) and provide a summary in
Alg. 1. For a set of d signals {y1, . . . ,yd}, each of dimension
n, the minimum `2-norm representation of yi is given by

c̄i = argmin
c∈Rd

‖c‖2 subject to yi = Y(i)c.

In stark contrast to minimum `1-norm representations com-
puted using (SSC), which necessitate sophisticated sparse-
signal recovery algorithms, the `2-norm representations can
be calculated by standard least-squares methods.

In order to improve the conditioning of the pseudoinverse
and consequently, the performance of our algorithm, we make
use of the thresholded pseudoinverse instead of the full pseu-
doinverse of the data. We define the thresholded pseudoin-
verse of A = USVT as

A−τ =VS−τUT , [S−τ ]i,i=

{
[S]−1

i,i , if [|S|]i,i ≥ τ
0, otherwise.

(2)

We compute dense representations for yi according to c̄i =
Y−τ(i) yi where τ > 0 is a suitable thresholding parameter. In
practice, we choose the thresholding parameter τ to preserve
most of the energy in the spectrum (singular values in S).

The algorithm then performs spectral clustering on the
graph Laplacian of W = |C|+ |CT | using normalized graph
cuts [11], where the matrix C contains the coefficient vectors
c̄i in its rows. Alternatively, we can also threshold W such

NN SSC DSC

Fig. 1. Subset selection from overlapping subspaces in noise
(60% overlap, SNR = 20dB); from left to right: NN, SSC, and
the proposed DSC.
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Fig. 2. Average classification rates from overlapping sub-
spaces in noise. On the left, we fix the overlap to 0.6 and
vary the SNR. On the right, we fix the SNR to 20dB and vary
the SNR.

that each point has only k nonzero elements per row and thus
the resulting graph is of degree k. The resulting output of the
graph cuts algorithm is a set of labels L = {`1, . . . , `d} for
each point in the dataset, where `i ∈ {1, . . . , p},∀i.

In addition to providing advantages in terms of the numer-
ical stability of the algorithm, the thresholded pseudoinverse
also provides a natural way to form least-squares representa-
tions of the data in noise. In particular, we can set the thresh-
old parameter τ based upon the amount of noise in the data (or
via cross-validation) in order to remove erroneous dimensions
from the data that the noise alone occupies, i.e., dimensions
where the subspaces do not occupy.

4. RESULTS

In this section, we demonstrate the efficacy of the proposed
DSC method on both synthetic and real data. First, we study
the probability of correct classification for varying levels of
signal-to-noise ratio (SNR) and for different amounts of over-
lap between subspaces (dimension of intersection between
subspaces). Following this, we showcase the classification
performance of DSC for segmenting images of faces under
different illumination conditions.

4.1. Generative model for synthetic data

To study the performance of DSC, we start with a synthetic
example where the goal is to separate data living on a union of
two subspaces. To generate a pair of k-dimensional subspaces
with a q-dimensional intersection, we begin by drawing two
disjoint index sets Ω1 and Ω2 of k − q columns from an or-
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Fig. 3. Affinity matrices from face illumination subspaces; from left to right: NN, SSC, and DSC.

thonormal basis (ONB) D ∈ Rn×n, where Ω1 ∩ Ω2 = ∅.
Then, we select another set Ωc of q distinct and orthogonal
columns from D that both subspaces will share. We refer to
the ratio of the intersecting dimensions to the subspace di-
mension q/k as the ‘overlap’ between the pair of subspaces.

Let D1 = [DΩ1
,DΩc

] denote the set of columns from
D that we will use to synthesize points from the first sub-
space W1, where span(D1) = W1. Similarly, let D2 =
[DΩ2

,DΩc
] denote the set of columns from D that we will

use to synthesize points from the second subspace W2 with
span(D2) = W2. After choosing the subspaces, we synthe-
size points from Wi as Yi = DiAi, where Ai ∈ Rn×di is
a matrix of i.i.d. standard Normal coefficients used to mix
the vectors in Di. Finally, we normalize all the points in
each dataset Yi to unit `2-norm and stack the resulting vec-
tors into the matrix Y = [Y1,Y2], where Y ∈ Rn×d with
d = d1 + d2.

4.2. Synthetic experiments

Here, we study the classification performance for three meth-
ods for computing subspace affinities: (1) nearest neighbor
(NN) subset selection, (2) SSC using OMP, and (3) the pro-
posed DSC. We use each of these three methods to form an
affinity matrix C and then apply spectral clustering to the
graph Laplacian of W = |C| + |CT| for each method. In
Fig. 1, we show the affinity matrices computed via NN, SSC,
and the proposed DSC method, where the number of nonzero
elements in each row of C are at most k = 20 and the di-
mension of the subspaces is ten. For both NN and SSC, two
clusters are visible on the block diagonal, but DSC has more
of its nonzero edges concentrated in their correct clusters than
the NN solution. In contrast, the subspace clusters are barely
visible in the affinity matrix obtained from SSC.

To compare the performance of these approaches, in
Fig. 2, we show the percent of correctly labeled points (clas-
sification error) as we fix the overlap and vary the SNR (left)
and fix the SNR and vary the percent overlap between the
pair of subspaces (right) . In both experiments shown in
Fig. 2, we observe a dramatic improvement in the classifica-
tion performance of DSC over both NN and SSC, with SSC
providing better classification performance in the noisefree
setting. Both NN and SSC achieve at most 78% classification

performance, while DSC approaches nearly perfect classifica-
tion performance in the noisefree setting, with classification
rates ranging from 84%–97%. In Fig. 2 (bottom), we show
the classification performance as we vary the percentage of
overlapping blocks between the two subspaces; this simu-
lation also reveals that DSC outperforms NN and SSC by a
significant margin.

4.3. Face illumination subspaces

Finally, we compare the performance of DSC with NN and
SSC for unions of illumination subspaces arising from a
collection of images of two different faces under various
lighting conditions. By fixing the camera center and posi-
tion of the persons face and capturing multiple images under
varying lighting conditions, the resulting images are well-
approximated by a 10-dimensional subspace [3].

In Fig. 3, we show the incidence matrices obtained via
NN (left), SSC with OMP (middle), and DSC (right) for a
collection of images of four different faces selected at random
from the Yale Database B [14], where the number of points in
each class equals (30, 20, 40, 10) respectively. Let Pm denote
the miss rate (probability that points are not included in the
correct subspace cluster) and Pf denote the false alarm rate
(probability that points are included in an incorrect subspace
cluster). The classification errors for this experiment are NN:
Pm = 34.4%, Pf = 20.9%; SSC: Pm = 8.8%, Pf = 1%;
DSC: Pm = 5.6%, Pf = 0.3%. This result provides further
empirical evidence that DSC yields improved classification
performance over SSC and NN on real-world data.

5. CONCLUSIONS

In this paper, we proposed a novel subspace clustering algo-
rithm, referred to as dense subspace clustering (DSC). This
method relies on the formation of dense least-squares rep-
resentations to populate the subspace affinity matrix for the
data, rather than sparse representations used by state-of-the-
art methods as in [10]. We demonstrated that DSC provides
superior performance over sparse subspace clustering (SSC)
and nearest neighbor (NN) methods for synthetic as well as
real-world data. Future lines of effort include reducing the
computational complexity of DCS and providing a theoreti-
cal analysis of DSC.
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