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ABSTRACT

Modelling time series is quite a difficult task. The last recent years,
reservoir computing approaches have been proven very efficient for
such problems. Indeed, thanks to recurrence in the connections be-
tween neurons, this approach is a powerful tool to catch and model
time dependencies between samples. Yet, the prediction quality of-
ten depends on the trade-off between the number of neurons in the
reservoir and the amount of training data. Supposedly, the larger the
number of neurons, the richer the reservoir of dynamics. However,
the risk of overfitting problem appears. Conversely, the lower the
number of neurons is, the lower the risk of overfitting problem is
but also the poorer the reservoir of dynamics is. We consider here
the combination of an echo state network with a projection method
to benefit from the advantages of the reservoir computing approach
without needing to pay attention to overfitting problems due to a lack
of training data.

Index Terms— Time series, echo state network, random projec-
tion

1. INTRODUCTION

Physical processes (such as the evolution of the temperatures in a
place or the concentration of a gas in the atmosphere), economical
processes, etc., are phenomenons which can be modelled as time
series. A reasonable question which may arise once the data are
collected could be: would it be possible to predict future samples of
a time series given those we already know? This is particulary true
when important problems, like climate change, are at stake.

A first solution would be to start from a known model (e.g., a dif-
ferential equation) and adapt its parameters from the collected sam-
ples. However, determining a model is not an easy task when little or
even nothing is known about the underlying process. Moreover, this
way of solving the prediction problem usually provides only with ad
hoc solutions and the crafting task, which can be time consuming,
must be done for each new problem.

Soft computing approaches have thus been proposed to find
models able to predict time series. The idea is to propose general
models for which no hypotheses are required either about the un-
derlying process or about the time dependencies between samples.
The reservoir computing approach seems to be particularly appro-
priate. Indeed, reservoir computing uses Recurrent Neural Networks
(RNNs) [1, 2] which can catch dependencies over time because of
the recurrent connections among its neurons.

Results have been computed with the InterCell cluster funded by the
Région Lorraine. The authors want to thank the ANR project METHODEO
for partial funding.

An RNN is made of an input layer, a hidden layer (or reservoir)
and an output layer. The hidden layer is supposed to contain a large
number of neurons. Each neuron is possibly connected to itself and
to any of the other neurons on this layer. Its connection to itself
induces a memory effect. This layer is thus responsible for catching
the dynamics. Supposedly, the larger the number of neurons in the
reservoir, the more complex the caught dynamics is. More details
can be found in [1]. The problem while using RNNs is that classic
training methods such as backpropagation do not work properly [3].

Because of that, Echo State Networks (ESNs) have been intro-
duced [4]. ESNs are RNNs where both the weights of the connec-
tions from the input to the reservoir and the weights of the connec-
tions inside the reservoir are set up randomly initially. Some aspects
for defining good weights remain unclear but good heuristics have
been found to build efficient ESNs [5]. The problem of learning the
connections inside the reservoir is thus avoided and only the weights
of the output layer are learnt. To do so, several algorithms have
been proposed, such as a simple linear regression or most commonly
least-squares [5]. Especially, an online version of this algorithm, the
Recursive Least Squares (RLS) has been successfully experienced
in [6] on a time series prediction task.

Related to the training of the ESN, the choice of the number of
hidden neurons is of major importance when designing the network.
One must remind that there are as many weights to learn as the num-
ber of neurons in the reservoir. As said previously, a large number
increases the ability to represent a complex dynamics. However,
if this number is too large (with respect to the amount of training
data), the generalisation of the representation is not ensured (this is
commonly known as the bias-variance trade-off). In other words,
overfitting problems might appear.

The overfiting problem is underlined in [5]. In this tutorial, the
authors propose to reduce the size of the reservoir. Yet, this may
lead to poor results if the dynamics is complex. Other solutions like
regularisation have also been proposed. In [7], a ridge regression is
used to solve a time series prediction task. Also, results with sev-
eral schemes of pruning and regularisation have also been published
in [8] and tested on two different problems. Notably, the Least Angle
Regression (LAR) algorithm [9], which performs an L1 regularisa-
tion, was tested (this approach performs somehow feature selection).

Yet, since the underlying dynamics is rarely known, a large num-
ber of neurons in the reservoir is preferable by default. Designing an
approach where this number could be large is thus of interest. The
work presented here proposes to increase the robustness to overfit-
ting when adding neurons in the reservoir. To do so, a projection of
the internal state of the network (the activity of the hidden neurons)
on a space of a smaller dimension is added. The projection used is
a random projection [10] and the data from the original space are
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projected on a random hyperplane. Under particular conditions, the
distance between the points from the original space to the new ones
are preserved with a given probability. The advantage of such a pro-
jection is that the dimension of the new space does not rely on the
dimension of the initial space but only on the amount of data.

This new method has the advantage of decreasing the number
of parameters to learn while keeping the number of hidden neurons
large. A complex dynamics can thus be caught and the training can
be made with a reasonnable amount of data. In what follows, a brief
review of ESNs and random projections is proposed in Sec. 2. Then,
in Sec. 3, the experimental settings are presented. Finally, in Sec. 4,
the combination of ESNs and random projections is tested on a time
series prediction task. The results are compared to the ones returned
by an ESN trained with RLS and LAR algorithms.

2. ESN COMBINED WITH RANDOM PROJECTIONS

2.1. Principle of ESNs

Echo State Networks (ESNs) [4] are Recurrent Neural Networks
(RNNs) where only the weights to the output layer are learnt. The
other connections are chosen randomly in order for the network to
have the echo state property. This property states that if the inter-
nal state of the network is equal to another one after the network
has been fed with two sequences of inputs, then the input sequences
are identical. The reservoir of the ESN must be rich enough to match
each history of inputs to a different internal state. The ESNs are very
interesting networks since they avoid the difficult task of learning the
recurrent connections.

Let u(k) ∈ RNi be a column vector representing the input at
time k (Ni being the number of input neurons), x(k) ∈ RNh be a
column vector representing the activity of the hidden neurons (Nh
being the number of hidden neurons), and y(k) ∈ RNo be a column
vector representing the activity of the output (No being the number
of output neurons). Let W in be a (Nh ×Ni)-matrix containing the
synaptic weights of the connections between the input neurons and
the hidden layer, Whid a (Nh ×Nh)-matrix containing the weights
of the connections in the hidden layer andW out a (No×Nh)-matrix
containing the weights of the connections from the hidden layer to
the output. The activation of the hidden neurons and the output neu-
rons is updated as follows:

x(k + 1) = f(Whidx(k) +W inu(k + 1))

y(k + 1) = fout(W out(u(k + 1),x(k + 1)))

with f the activation function of the hidden layer (for example f =
tanh) and fout the activation function of the output layer (for ex-
ample fout being the identity). The vector (u(k + 1),x(k + 1))T

is the concatenation of the vector u(k+ 1) and x(k+ 1). The input
matrixW in is a possibly sparse random matrix andWhid is a sparse
matrix. No precise conditions have been determined to choose the
coefficients of the matrix Whid but for the choice of the spectral ra-
dius α of Whid. The spectral radius is defined as α = max

i
|λi|,

λi being the eigenvalues of Whid. A spectral radius greater than
one will just induce the echo state property not to be ensured [4]. In
practice, a network which Whid matrix has a spectral radius smaller
than one seems to often exhibit the echo state property. In Fig. 1 the
description of the ESN is summarised.

The main advantage of the ESN approach is that most of the
synaptic weights are chosen randomly. Only the output weights
are learnt. To do so, a linear regression can be used to learn the
W out matrix. A sequence of n ∈ N pairs (uteach(k),yteach(k))
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Fig. 1. Structure of an ESN. For the example, Ni = 1 and No = 1.

is provided to the network. The training error to be minimised is
εtrain(k) = yteach(k)−W out(uteach(k),x(k)).

Here are the steps of the ESN training. First, the input ma-
trix W in and the matrix of hidden connections Whid are ran-
domly built. Then, for all of the examples of the training set,
S = (uteach(k),yteach(k)), k ∈ 0..n, the network is fed with
uteach(k) and the output y(k) = W out(n − 1)x(k) is computed.
Each time an example is provided, the weights are updated following
a Widrow-Hoff rule:

W out(k) = W out(k − 1) +Kk(yteach(k)− y(k)).

The gainKk is computed so that the empirical cost
∑k
i=0 εtrain(i)2

is minimised. The algorithm used here is the Recursive Least
Squares (RLS) algorithm.

Since finding a good compromise between the complexity of the
model (which memory depth is rarely known) and the amount of
training data is not so obvious, it can be of interest to find a new
approach to get rid of this constraint. This approach would present
the advantage of allowing a large number of neurons in the reservoir
without paying attention to overfitting problems. The idea developed
here is to project the x vector into a space of smaller dimension.

2.2. Random projections

As presented in the previous section, choosing the number of hidden
neurons may be difficult in situations where neither the amount of
training data is big nor a good intuition about the complexity of the
dynamics of the system is known. The method proposed here allows
the number of neurons to be increased while avoiding overfitting.

The method is a projection into a space of a smaller dimension
with some guarantees about the loss of information. The method is
called random projection since the coefficients of the projection ma-
trix are chosen randomly (under certain conditions). The weights of
the output matrix W out are not learnt direclty from the x(k) vector
anymore but with the projection of the x(k) vector on this basis.

The results about the random projections are based on a theorem
by Dimitri Achiloptas [10] based itself on a lemma by Johnson and
Lindenstrauss [11]. The theorem states that it is possible to find a
projection with a controlled loss of information.

Theorem Let M be an arbitrary set of n points in Rm represented
in a n × m matrix A. Given ε, β > 0, let Kε,β be a constant and
m0 =Kε,βlog(n).

For integer p > p0, let R be a m × p random matrix with
R(i, j) = rij , where rij are independant random variables: rij =

+
√

3 with probability (w. p.) 1/6, −
√

3 w. p. 1/6, 0 w. p. 2/3.
Let Π = 1√

p
AR and let f : Rm → Rp map the ith row of A to

the ith row of Π. W. p. at least 1− p−β , for all u, v ∈M :

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2
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Fig. 2. Combination of the ESN and random projections. With
xΠ(k) = Πx(k). For this example, Ni = 1, m = 3, and No = 1.

This result states that finding a projection from the initial space
to a space with a smaller dimension while losing a bounded amount
of information is possible. The information loss depends on the di-
mension of the projection which itself depends on the amount of
data n (log(n) dependency). Such a projection is interesting since
its dimension does not depend on the dimension of the initial space.

By means of this theorem, a large number of neurons can be
used in the hidden layer. The x vector is then projected into a space
of smaller dimension. Eventually, the coefficients of the model are
learnt from the projected data. The computational complexity thus
decreases and the risk of overfitting decreases too since the number
of parameters, for a same amount of training data, is lower. Fig. 2
sums up how ESNs and random projections are combined.

ESNs combined with RPs are tested in the next section for a
time series prediction task, a standard benchmark where ESNs have
already been proven efficient [12, 6].

3. EXPERIMENTAL SETTINGS

The time series used for the experiments is described first. ESNs
parameters and the metrics for the evaluation of the results follow.

3.1. Description of the time series

A 10th order non-linear NARMA time series is used for the exper-
iments. This series is the same as the one described in [6] and was
the first time used in [13]. The system is driven from an independent
and identically distributed uniform input e from [0 , 0.5]:

d(k + 1) =

tanh

(
0.3d(k) + 0.05d(k)

[
9∑
i=0

d(k − i)

]
+ 1.5e(k − 9)e(k) + 0.1

)
.

To run the experiment, input sequences (eteach(k), dteach(k)) have
been generated. The first 200 samples have been discarded to let
the time series stabilises. An overview of the series and an example
of prediction returned by the ESN is given in Fig. 3. Although the
series is noisy, the prediction follows the actual series even if not
perfectly.

3.2. Description of the ESN

The parameters of the ESN are the following: Ni = 1 andNo = 1
(since it is a 1-dimension time series), Nh varies. The input unit u
is linked to the reservoir with a random vector W in sampled from a
uniform distribution in [−0.1 , 0.1]. The reservoir matrix Whid has
a 5% connectivity and α set to 0.8. The number of hidden neurons
varies during the experiments to check the influence of the reservoir
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d
(
k
)

Samples k

Desired output
Predicted output

Fig. 3. Overview of the time series and an example of prediction
returned by the ESN.

size on the quality of the prediction. The weights between ouput
unit y and the reservoir are learnt. When the ESN is fed with new
samples, the first 500 data are discarded to let the reservoir of the
ESN reach the steady state.

3.3. Evaluation of the performance

The Mean Squared Error (MSE) between the testing data ytest
and the prediction ŷ of the network over several trials serves as a
performance metrics:

MSE =
1

T

T∑
i=1

(ytest(i)− ŷ(i))2.

The amount of training data n is set to 100. The amount of testing
data T is set to 100. Each of the curves presented is an average
over the MSE computed for 50 different training sets and different
ESNs (for each new training set, new weights for W in and Whid

are generated). The associated variance also appears on the graphs.
Both the abscissia and ordinates are in log scale.

4. RESULTS

The following experiments illustrate the advantages of adding a ran-
dom projection to ESNs to solve a time series prediction task. The
first advantage is a better prediction for a given number of param-
eters. Indeed, since the number of parameters to be learnt is deter-
mined by the projection dimension, the number of hidden neurons
can be increased. In consequence, a more complex dynamics can be
modelled while avoiding overfitting problems. Second, the proposed
contribution is an online method which can be of interest while deal-
ing with real-time systems. A comparison to RLS without random
projections and to the Least Angle Regression (LAR) [9] algorithm is
proposed. LAR has been chosen because it particularly fits for prob-
lems where the number of training data is smaller than the number
of parameters to be learnt. One can notice that an L2 regularisation
is used in the RLS case while it is an L1 regularisation in the LAR
case and that LAR is a batch algorithm.

The first experiment presented in Fig. 4 shows how the MSE
evolves when the number of parameters p increases. The perfor-
mance of the RLS is compared to the one of the RLS combined with
random projections. In the first case, the number of parameters to
learn p is equal to the number of neurons in the reservoir. In the
second case, the number of parameters p to learn is equal to the
projection dimension. One has to pay attention that the projection
dimension is never larger than the number of hidden neurons which
explain why some points are missing in the figure. In Fig. 4, the error
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Fig. 4. Comparison of the ESNs performance with the ones of the
ESN and RPs versus the number of parameters p to learn. The algo-
rithm used for the learning is RLS.

with the RLS algorithm decreases when the number of hidden neu-
rons increases to reach a minimun (Nh = 50). Until a reasonnable
number of neurons in the reservoir, the representation of the series
is richer and thus of better quality. Then, the error increases to sta-
bilise. The regularisation performs quite well since the error does
not become huge even when the number of parameters is far larger
than the number of training data.

When an RP is added for the approximation, for a fixed dimen-
sion, say for example 10, the error decreases when the number of
hidden neurons increases to reach a constant level. This is of interest
to use RP since for a fixed number of parameters p, when not chosen
too large (5 or 10), the random projections allow a better learning.
The MSE is lower than when the RLS is direclty ran with the activ-
ities of the hidden neurons. One can notice that adding neurons in
the hidden layer does not degrade performance.

Using a random projection after the ESN is thus interesting: for
an equivalent small number of parameters to learn (p < 100), the
testing error is lower.

The Fig. 5 presents this aspect. The projection dimension is
fixed and the number of hidden neurons increases. Curves are plot-
ted for different projection dimensions. The results got with the RLS
algorithm are recalled. It appears that if the projection dimension is
sufficient enough (p > 100), the quality of the prediction is nearly
equivalent: the difference between the best and the worst trial is at
most 0.001. Moreover, the number of hidden neurons does not in-
fluence the quality of the learning. It can be chosen very large with
respect to the amount of training data (Nh > 1000) without increas-
ing the error. The overfitting problem is thus avoided.

The two presentations of the results show the interest of using
random projections: for a fixed number of parameters to learn, the
error is lower and the choice of the number of parameters is made
simple. Indeed, this number can be large (to ensure the dynamics of
the system to be caught) without overfitting problems.

The third aspect presented is the comparison between LAR and
RLS combined with random projections. This comparison is inter-
esting since each of these algorithms somehow performs feature se-
lection. The first one because only the features which bring the most
important information are selected. The second one because the data
is projected into a space of smaller dimension. The results are shown
in Fig. 6. The error made with LAR tends to deacrease when the
number of neurons in the reservoir increases until a minimum is
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Fig. 5. Comparison of the ESNs performance with the ones of the
ESN and RPs versus the number of neurons in the reservoir. Several
projection dimensions are tested. The algorithm used for the learning
is RLS.
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Fig. 6. Performance of the ESN trained with LAR compared to the
performance of the ESN combined with random projections trained
with RLS. The projection dimension is 5. The number of hidden
neurons varies.

reached (Nh = 50). Then, when the number goes on increasing,
the error increases too until Nh = 300 where a plateau is reached.
When the random projection is used and the learning is made with
the RLS algorithm, the results are of better quality when the number
of hidden neurons tends to be large. Moreover, if we compare the
LAR and the RLS results (Fig. 4), the L1 regularisation (LAR) is
less efficient than the L2 regularisation (RLS).

5. CONCLUSION

Some encouraging results concerning time series prediction have
been obtained by combining echo state networks and random pro-
jections. This method proposes a solution to limitate the overfitting
problems. Indeed, the number of parameters to learn is decreased
without needing the number of neurons in the reservoir to be de-
creased too (a large number of hidden neurons guarantees time de-
pendencies to be caught). Consequently, the computational costs are
also lowered. Moreover, the proposed approach has the advantage
of being online.
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