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?University of Maryland, Baltimore County, Dept. of CSEE, Baltimore, MD 21250, USA
†Fortemedia, Sunnyvale, CA 94086, USA

ABSTRACT

Since in many blind source separation applications, latent
sources are both non-Gaussian and have sample dependence,
it is desirable to exploit both non-Gaussianity and sample
dependency. In this paper, we use the Markov model to con-
struct a general framework for the analysis and derivation of
algorithms that take both properties into account. We also
present two algorithms using two effective source priors.
The first one is a multivariate generalized Gaussian distri-
bution and the second is an autoregressive model driven by
a generalized Gaussian distributed process. We derive the
Cramér-Rao lower bound and demonstrate that the perfor-
mance of the algorithms approach the lower bound especially
when the underlying model matches the parametric model.
We also demonstrate that a flexible semi-parametric approach
exhibits very desirable performance.

Index Terms— Blind source separation, Independent
component analysis, Mutual information rate, Markov model.

1. INTRODUCTION

Independent component analysis (ICA) has been one of the
most attractive solutions for the blind source separation (BSS)
problem. ICA can estimate a demixing matrix and separate
signals by assuming the source signals are mutually indepen-
dent. It has been widely used in many applications such as
biomedical signal processing, communications, and geophys-
ical data analysis.

Most of the ICA algorithms exploit one of the follow-
ing two properties: non-Gaussianity or sample dependency
[1]. FastICA [2], the efficient variant of FastICA algorithm
(EFICA) [3], Infomax [4], joint approximate diagonaliza-
tion of eigenmatrices (JADE) [5], robust, accurate, direct
independent components analysis algorithm (RADICAL)
[6], ICA by entropy bound minimization (ICA-EBM) [7]
only exploit non-Gaussianity property and assume samples
are independently and identically distributed (i.i.d.). The
second-order blind identification (SOBI) algorithm [8] and
the weights-adjusted second-order blind identification (WA-
SOBI) algorithm [9] use sample dependency, by only using
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the second order statistics. Other methods, such as the hy-
brid algorithm (MULTICOMBI) [10], autoregressive mixture
of Gaussians (AR-MoG) [11], ERBM (introduced originally
as FBSS) [12], and Markov source separation [13], aim at
exploiting both non-Gaussianity and sample dependency.

In this paper, we discuss Markovian source separation
since the Markov model is a very general model for many
time series. We give the general cost function, update rule,
and performance analysis for Markovian source separation.
Also, we propose two algorithms, which exploit both sample
dependency and non-Gaussianity by minimizing entropy rate
under two different source prior assumptions: (1) a multi-
variate generalized Gaussian distribution (MGGD), and, (2)
an autoregressive (AR) model driven by an i.i.d. process
following a generalized Gaussian distribution (GGD). Under
the first assumption, sources are separated by minimizing the
difference of two joint entropies, which equals the entropy
rate for a Markovian source. We call this entropy rate min-
imization via multivariate generalized Gaussian distribution
(ERM-MG). The second algorithm relies on the GGD den-
sity function for the driving process of an AR model. We
show that source separation can be achieved using entropy
rate minimization via autoregression driven by generalized
Gaussian process (ERM-ARG), and the algorithm approaches
the Cramér-Rao lower bound (CRLB) effectively when the
sources follow the model.

2. BACKGROUND

2.1. Linear Mixture Model

Let N statistically independent, zero mean sources s(t) =
[s1(t), . . . , sN (t)]T be mixed through an N × N nonsingu-
lar mixing matrix A so that we obtain the mixtures x(t) =
[x1(t), . . . , xN (t)]T as x(t) = As(t), 1 ≤ t ≤ T , where
(·)T denotes the transpose, and t is the sample (time) index.
The mixtures are separated by y(t) = Wx(t), where y(t) =
[y1(t), . . . , yN (t)]T , and W = [w1, . . . ,wN ]T is the separa-
tion or demixing matrix to be estimated. These linear models
can also be written in matrix form: Y = WX = WAS,
where S = [s1, . . . , sN ]T ∈ RN×T , X = [x1, . . . ,xN ]T ∈
RN×T , Y = [y1, . . . ,yN ]T ∈ RN×T , si ∈ RT , xi ∈ RT ,
and yi ∈ RT .
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2.2. Cost Function

A natural measure of dependence amongN random processes
yi, i = 1, . . . , N , is given by the mutual information rate:

Ir(y1; . . . ; yN ) =
N∑
i=1

Hr(yi)− log |det(W)| −Hr(x),

where Hr(yi) = limT→∞H(yi(1), ..., yi(T ))/T is the en-
tropy rate of the process yi, and Hr(x) is the entropy rate
of the observed vector-valued process x, which is a constant
with respect to W. Hence, to achieve BSS, the cost function
can be written as

Jr(W) =
N∑
i=1

Hr(yi)− log |det(W)|. (1)

If the samples are i.i.d., the cost function in (1) reduces to
mutual information I(y1; . . . ; yN ), and is equivalent to like-
lihood for i.i.d. samples [14,15], which has been widely used.
For the general case where samples are not i.i.d., we can
show that (1) is equivalent to likelihood given by L(W) =
−
∑N
i=1 log psi(yi)− T log |det(W)|.

3. MARKOVIAN SOURCE SEPARATION

To make the derivation tractable, we assume that the sources
are stationary Kth-order Markov processes, where K � T .
Hence, the entropy rate can be written as

Hr(s) = lim
T→∞

H(s(T )|s(T − 1), . . . , s(1))

=H(s(T )|s(T − 1), . . . , s(T −K))
=H(s(K+1))−H(s(K)) (2)

where s(P ) ∈ RP is a random vector, s(P )(t) = [s(t), . . . , s(t+
P − 1)]T is the realization of s(P ) at index t, and S(P ) =
[s1,(P ), . . . , sN,(P )]

T ∈ RN×P . These definitions are also
used for other variables.

3.1. Cost Function

For a Markovian source, the entropy rate equals to the differ-
ence of two joint entropies as in (2). Hence, under the Markov
model assumption, ICA cost function in (1) can be written as

Jr(W) =
N∑
i=1

(H(yi,(K+1))−H(yi,(K)))− log |det(W)|

=H(Y(K+1))−H(Y(K))− log |det(W)|. (3)

Comparing (3) with (1), we only need K + 1 dimensional
joint probability density function (PDF) psi(yi,(K+1)) in (3),
instead of T dimensional joint PDF psi(yi), for all sources
with the Markovian assumption. By using the decoupling
method [16, 17], we can divide the problem of minimizing
Jr(W) with respect to the demixing matrix W into minimiz-
ing Jr(W) with respect to each of the row vectors wi, i =

1, . . . , N . We can then write the cost as a function of only
wi, which is

Jri(wi) =H(yi,(K+1))−H(yi,(K))− log |hTi wi|+ C,

where hi is a unit Euclidian length vector which is perpen-
dicular to all the row vectors of W except wi, and C is a
constant term with respect to wi.

3.2. Update Rule

The gradient of Jr(W) with respect to W is given by
∂Jr(W)
∂W

=E
{

ϕ(Y(K+1))X
T
(K+1)

}
− E

{
ϕ(Y(K))X

T
(K)

}
−W−T ,

where the score functions are given as

ϕ(Y(P )) =
[
ϕ1(y1,(P )), . . . ,ϕN (yN,(P ))

]T
∈ RN×P

ϕi(yi,(P )) =∂ log pyi(yi,(P ))/∂yi,(P ) ∈ RP .
The natural gradient of Jr(W) with respect to W is given by

∆W =
∂Jr(W)
∂W

WTW

=
(
E
{

ϕ(Y(K+1))Y
T
(K+1)

}
− E

{
ϕ(Y(K))Y

T
(K)

}
− I
)

W.

By using the decoupling method, the gradient update rule for
each vector can be written as
∂Jri(W)
∂wi

=E
{

X(K+1)ϕ(yi,(K+1))
}
− E

{
X(K)ϕ(yi,(K))

}
−hi/

(
hTi wi

)
.

3.3. Performance analysis

In [18, p.126], the general form of the Fisher information ma-
trix (FIM) is given as

F(ij) = T

(
fij 1
1 fji

)
, (4)

where fij , 1
T Tr(ΓiRj), Γi , E{ϕi(si)ϕT

i (si)} ∈
RT×T , and Rj , E{sjsTj } ∈ RT×T . For Y = (I + E)S,
the CRLB of Eij is given by

E
{
E2
ij

}
≥ fji
T (fijfji − 1)

. (5)

Since Γi is the autocorrelation matrix of ϕi(si), then Γi is a
symmetric Toeplitz matrix. In addition, since si is a Marko-
vian source, Γi is a band diagonal matrix with left and right
half-bandwidth equal to the Markov model order, K. To cal-
culate fij , we only need to calculate a (K + 1) × (K + 1)
submatrix of Γi, denoted as Γ(K+1), index i is suppressed for
simplicity, which starts at (t, t) for ∀t.

Γ(K+1) = Es

 ∂ log p(y)
∂y(K+1)(t)

(
∂ log p(y)
∂y(K+1)(t)

)T
=Es

(K̃)

∂ log p(y
(K̃)

(t−K))

∂y(K+1)(t)

(
∂ log p(y

(K̃)
(t−K))

∂y(K+1)(t)

)T ,
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since y
(K̃)

(t − K) includes all entries of y that depend on

y(K+1)(t), where K̃ = 3K + 1. Hence, Γ(K+1) is a sub-

matrix of Γ
(K̃)

, Es
(K̃)
{ϕ(y

(K̃)
)ϕT (y

(K̃)
)}, and FIM is

determined.
To sum up, for the Markovian source, blind source sepa-

ration and its performance analysis are achievable if we know
the PDF of s(K+1). Hence, the key problem in Markovian
source separation is to determine the PDF of s(K+1).

4. ALGORITHMS

4.1. Entropy rate minimization: Multivariate generalized
Gaussian distribution model (ERM-MG)

So far, we have the general form for Markovian source separa-
tion, and modeling and estimation of the PDF of s(K+1) is the
key issue. The MGGD provides a flexible tool for data mod-
eling and simulation. By assuming that si,(P ) is a zero mean
and P -dimensional MGGD, we can derive the score function
and update rule. The zero mean MGGD density function is
given by [19]

pX(x,Σ, β, d) =
βΓ(d/2)

2d/2βπd/2Γ(d/2β)|Σ|1/2
e−

1
2 (xTΣ−1x)β ,

where Σ is the covariance parameter, β is the shape parame-
ter, and d is the dimension of x. MGGD will reduce to mul-
tivariate Gaussian if β = 1, and reduce to GGD if d = 1. By
using the method of moments, Σ can be estimated as [19]

Σ̂ =
dΓ( d

2β )

21/βΓ(d+2
2β )

Cx,

where Cx =
∑T
t=1 xtxtT /T is the sample covariance ma-

trix. MGGD parameters can also be estimated by using maxi-
mum likelihood (ML), but there are no closed form solutions.
The entropy of an MGGD random vector is given by [20]

H(x) = − log
βΓ(d/2)

2d/2βπd/2Γ(d/2β)
+

1
2

log |Σ|+ d

2β
.

The MGGD score function can be written as

ϕ(x) =β(xTΣ−1x)β−1Σ−1x. (6)

Using the score function ϕ(x) given in (6), the matrix Γ
(K̃)

can be evaluated by generalized spherical coordinate transfor-
mation, as in [20, 21],

Γ
(K̃)

=Es
(K̃)

{
ϕy

(K̃)
ϕT

y
(K̃)

}
=

(
2β

K̃Γ( K̃2β )

)2

Γ

(
K̃ + 4β − 2

2β

)
Γ

(
K̃ + 2

2β

)
Σ−1

(K̃)
.

Hence, the FIM and CRLB can be evaluated by (4) and (5),
respectively.

4.2. Entropy rate minimization: Autoregressive GGD
source model (ERM-ARG)

Another effective Markovian source model is AR model
driven by a GGD innovation process. For this model, we
derive the cost function, update rule, and CRLB. We assume
that the ith source is generated by the following AR model

si(t) =
K∑
k=1

qiksi(t− k) + ni(t),

where qik and K are the AR coefficients and order, respec-
tively, and ni(t) is the white GGD process.

The mutual information rate cost in (3) can be derived as

Jr(W) =
N∑
i=1

H(ni)− log |det(W)|. (7)

From (7), we see that the entropy rate for source si is equiv-
alent to the entropy of driving GGD process ni. Hence, for
this model, the cost function, update rule, and CRLB all have
simpler forms than the general forms for Markovian source
separation. By taking the derivative of the cost function in (7)
with respect to wi, the update rule is given by

∂Jr(W)
∂wi

=E

{
ϕni(ni)

∂ni
∂wi

}
− hi

hTi wi

=
1
T
gi(X)ϕni −

hi
hTi wi

,

where ϕni , [ϕni(ni(1)), . . . , ϕni(ni(T ))]T , ϕni(ni(t)) ,
−∂ log pni(ni(t))/∂ni(t), gi(X) , [gi(x1), . . . , gi(xN )]T ∈
RN×T , and gi(xj) , [xj(1)−

∑K
k=1 qikxj(1−k), . . . , xj(T )−∑K

k=1 qikxj(T − k)]T ∈ RT , which is the output of ith
whitening filter driven by xj . The relative gradient of (7) is

∇Jr(W) =
∂Jr(W)
∂W

WT

=
1
T

(
g1(Y)ϕn1

, . . . , gN (Y)ϕnN

)T − I.

Hence, the ijth entry of the likelihood relative gradient matrix
is given by ∇L(W)ij = T∇Jr(W)ij = ϕT

nigi(yj)− Tδij .

E
{

(∇L(W)ij)
2
}

=E
{

(ϕT
nigi(yj))

2
}

= Tr
(
E
{
ϕniϕ

T
ni

}
E
{
gi(yj)gTi (yj)

})
=E

{
ϕ2
ni

}
E
{

Tr
(
gi(yj)gTi (yj)

)}
=TE

{
ϕ2
ni

}
E
{
g2
i (yj)

}
.

Hence, fij = E
{
ϕ2
ni

}
E
{
g2
i (yj)

}
, and the FIM and CRLB

can be evaluated by (4) and (5), respectively.

5. EXPERIMENTAL RESULTS

In this section, we study the performances of the two pro-
posed algorithms, ERM-MG and ERM-ARG, along with en-
tropy rate bound minimization (ERBM), which provides a
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flexible and robust entropy rate estimator. We compare their
performances with other BSS algorithms using simulated and
real data. For simulated data, we compare performances in
terms of interference to source ratio (ISR), which is given by
(1/N(N−1))

∑N
{i,j=1,i6=j}E{g2

ij}, where gij is the ijth en-
try of the the global demixing matrix G = WA, with CRLB
to show that proposed algorithms exploit both sample depen-
dency and non-Gaussianity. For real data, we compare per-
formances in terms of inter-symbol-interference (ISI), which
can be calculated as (1/2N)(

∑N
i=1

∑N
j=1 |gij |/maxk |gik|+∑N

j=1

∑N
i=1 |gij |/maxk |gkj |)− 1, to demonstrate the effec-

tiveness of proposed algorithms if the data does not follow
our model. All results are the average of 100 runs.

Experiment 1: We generate four sources using third-order
AR models driven by GGD processes with shape parameters
0.5, 0.9, 1.5, and 5, respectively. From Fig.1, we see that
ERM-ARG has the best performance among those algorithms
because it is a ML method and the data fits the model exactly.
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Fig. 1. Comparison of performances of ERBM, ERM-ARG,
ERM-MG, and CRLB using simulated data generated by third
order AR model driven by GGD processes.

Experiment 2: We compare the performances with the
CRLB for the separation of two sources. One is an i.i.d. GGD
source. The other one is generated by a first order AR model,
with coefficients 0, 0.5, and 0.9, respectively, driven by GGD
process. We introduce the diversity of both non-Gaussianity
and sample dependency. As observed in the Fig.2, the CRLB
decreases with increasing non-Gaussianity and/or diversity in
terms of sample dependency, and sources are not separable
when they are Gaussian with i.i.d. samples. Hence, as ex-
pected the performance improves when both types of diversity
are used, and the model is identifiable for Gaussian sources as
well, as long as their covariance matrices are not proportional.

Experiment 3: The performances of ten BSS algorithms
are compared in the separation of artificial mixtures of ten
image sources. JADE, EFICA, RADICAL and ICA-EBM
only use the non-Gaussianity property for separation. WA-
SOBI only uses the sample dependency property for separa-
tion. MULTICOMBI can exploit either non-Gaussianity or
sample dependency for the estimation of a specific source.
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Fig. 2. Comparison of performances of ERBM and ERM-
ARG, along with CRLB using simulated data generated by
first order AR model driven by GGD process.

All others use both properties for source separation. As ob-
served in Fig.3, both ERM-ARG and ERM-MG successfully
separate image sources. But they cannot achieve the best per-
formance among these algorithms because the real image data
does not satisfy the assumptions for the source distribution ex-
actly. ERBM has the best performance because it can model
non-causal data and makes fewer assumptions on the distribu-
tion of the sources. Hence, its entropy rate estimator is more
flexible and robust. We also see from Figs.1 and 2 that ERBM
exhibits very desirable performance for simulated data.
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Fig. 3. Comparison of BSS algorithms in the separation of
artificial mixtures of image sources.

6. CONCLUSION

We proposed a general cost function, update rule and per-
formance analysis for Markovian source separation, and
introduced two algorithms, ERM-MG and ERM-ARG. The
algorithms assume that the sources come from MGGD, or
are generated by AR models driven by GGD processes. We
compared the performances of these two algorithms with the
CRLB using simulated data, and demonstrated the effective-
ness on real world data.
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