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ABSTRACT

The recent extensions of independent component analysis
(ICA) to exploit source dependence across multiple datasets,
termed independent vector analysis (IVA), have thus far only
considered two multivariate source distribution models: the
Gaussian and a second-order uncorrelated Laplacian distri-
bution. In this paper, we introduce the use of the Kotz dis-
tribution family as a more flexible source distribution model
which exploits both second and higher-order statistics. The
Cramér-Rao lower bound (CRLB) for IVA performance pre-
diction is shown to be analogous to the bound for blind source
separation (BSS). Lastly, we provide an analytic expression
for the CRLB when the sources follow the multivariate power
exponential (MPE) subclass of distributions within the Kotz
family.

Index Terms— Independent vector analysis (IVA), joint
blind source separation (JBSS), Kotz distribution, multi-
variate power exponential (MPE) distribution, multivariate
generalized Gaussian distribution, Cramér-Rao lower bound
(CRLB)

1. INTRODUCTION

Blind source separation (BSS) problems have been well
studied and various algorithms have been developed and
successfully applied in a vast array of applications [1, 2].
A generalization of the BSS problem to multiple datasets,
termed joint blind source separation (JBSS), has been a more
recent development. The recent interest in JBSS is moti-
vated by various application domains such as when analyzing
multisubject datasets in biomedical studies using functional
magnetic resonance imaging or electroencephalography data,
or when solving the convolutive independent component
analysis (ICA) problem in the frequency domain using mul-
tiple frequency bins. A particular approach to JBSS, IVA
with second-order uncorrelated multivariate Laplace distri-
bution model (IVA-Lap), utilizes higher-order (greater than
second-order) dependencies, but it does not exploit the linear
dependencies expressed in the second-order statistics [3, 4].
These linear dependencies are explicitly exploited in [5] for
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defining IVA with multivariate Gaussian distribution model
(IVA-Gauss) algorithms. Here, we introduce the Kotz family
of distributions as a source distribution model. The Kotz fam-
ily is shown to include the two source distributions used in
already existing independent vector analysis (IVA) algorithms
[3, 5]. The use of the Kotz distribution prior provides the abil-
ity to exploit both second and higher-order statistics jointly
within one algorithm. Furthermore, we show the Cramér-Rao
lower bound (CRLB) for IVA. The form of the CRLB for
IVA is a generalization of the ICA CRLB given in [6, 7].
We provide a closed form expression for the CRLB when the
sources come from a subclass of the Kotz distribution family
called the multivariate power exponential (MPE).

2. JBSS & IVA PROBLEM FORMULATION

We begin by formulating the JBSS problem. There are K
datasets, each containing V samples, formed from the lin-
ear mixture of N independent sources, X[k] = A[k]S[k] ∈
RN×V , 1 ≤ k ≤ K. The entry in nth row and vth col-
umn of S[k] is s[k]

n (v), the nth row of S[k] is denoted by

the column vector s
[k]
n =

[
s

[k]
n (1) , . . . , s

[k]
n (V )

]T
∈ RV ,

and the vth column of S[k] is denoted by the column vec-

tor s[k] (v) =
[
s

[k]
1 (v) , . . . , s

[k]
N (v)

]T
∈ RN , where super-

script T denotes transpose. The invertible mixing matrices,
A[k] ∈ RN×N , are unknown real-valued quantities to be esti-
mated. The mixing matrices are not necessarily related.

The source vectors in each dataset can be concatenated
to form S =

[(
S[1]
)T
, . . . ,

(
S[K]

)T]T ∈ RNK×V . Using
this notation, we can denote the JBSS data model with a sin-
gle equation, namely X = AS, where A is a block diagonal
matrix or A = ⊕Kk=1A

[k]. The nth source component ma-

trix (SCM), Sn =
[
s

[1]
n , . . . , s

[K]
n

]T
∈ RK×V , is independent

of all other SCMs. Then the probability distribution func-
tion (pdf) of the concatenated source vector, S, can be written
as p (S) =

∏N
n=1 pn (Sn). A special case of the JBSS for-

mulation, termed IVA, occurs when the V samples are in-
dependently and identically distributed (iid), so that a ran-
dom vector, which we term as the source component vector
(SCV), can be defined from a column of the SCM, i.e., sn =
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[
s

[1]
n , . . . , s

[K]
n

]T
∈ RK . This implies that for IVA it assumed

that p (S) =
∏N
n=1 pn (Sn) =

∏N
n=1

∏V
v=1 pn (sn (v)).

The JBSS solution findsK demixing matrices and the cor-
responding source estimates for each dataset, with the kth
ones denoted as W[k] and Y[k] = W[k]X[k], respectively.
The estimate of the nth component from the vth sample of

the kth dataset is given by y[k]
n (v) =

(
w

[k]
n

)T
x[k] (v) , where(

w
[k]
n

)T
is the nth row of W[k]. The estimate of the nth SCM

is given as Yn =
[
y

[1]
n , . . . ,y

[K]
n

]T
.

3. IVA SOLUTION

The goal of IVA, the identification of the independent SCVs,
can be achieved by minimizing the mutual information among
the estimated source component vectors or equivalently by
maximizing the likelihood function for the given observations
X. The mutual information for the SCVs is given as [3, 5]:

I {y1; . . . ; yN} =

N∑
n=1

H{yn} −
K∑
k=1

log
∣∣∣det W[k]

∣∣∣−H{x} ,
where we use H{x} = −E {log px (x)} for Shannon (dif-
ferential) entropy of the random vector x. The entropy of the
mixture data is inconsequential and thus discarded to define
the IVA cost function:

J (W) ,
N∑
n=1

H{yn} −
K∑
k=1

log
∣∣∣det W[k]

∣∣∣ . (1)

The minimization of (1) can be performed using the gen-
eral methods described in [4] and [5]. We utilize the decou-
pled optimization approach of the latter in this paper, which
we summarize next. The benefits of the decoupled optimiza-
tion approach includes an ability to tailor step-sizes and aids
development of (quasi-) Newton algorithms.

Following [8], we define h
[k]
n to be a unit length vector

such that W̃
[k]
n h

[k]
n = 0, where W̃

[k]
n is the (N − 1)×N ma-

trix formed by removing the nth row of the demixing matrix
W[k]. Then, it can be shown that [9]:

∣∣∣det
(
W[k]

)∣∣∣ =

∣∣∣∣(h[k]
n

)T
w[k]
n

∣∣∣∣$[k]
n , (2)

where
(
$

[k]
n

)2

=

∣∣∣∣det

(
W̃

[k]
n

(
W̃

[k]
n

)T)∣∣∣∣. Clearly, $[k]
n is

invariant with respect to (wrt) w
[k]
n . An efficient recursive

method for computing h
[k]
n is given in [10].

Then, by substituting (2) into (1) as in [11], we have,

J (W) =

N∑
m=1

H{ym} −
K∑
l=1

log

∣∣∣∣(h[l]
n

)T
w[l]
n

∣∣∣∣+ log$[l]
n

= H{yn} − log

∣∣∣∣(h[k]
n

)T
w[k]
n

∣∣∣∣− C [k]
n , (3)

where we note thatH{ym} is independent of w
[k]
n form 6= n

and we let C [k]
n be the new quantity containing all the terms

that are invariant wrt w
[k]
n . Then, the IVA cost function

derivative wrt w
[k]
n is

∂J (W)

∂w
[k]
n

= E
{
φ[k]
n (yn) x[k]

}
− h

[k]
n(

h
[k]
n

)T
w

[k]
n

, (4)

where φ[k]
n (yn) is the kth element of the multivariate score

function φn (yn) , −∂ log pn (yn) /∂yn.
The vector derivative of the likelihood function is used

to iteratively update each source demixing row and results in
nonorthogonal demixing matrices by using a gradient update
rule followed by a renormalization of each demixing vector.

4. IVA PERFORMANCE BOUNDS

Here we provide the induced Cramér-Rao lower bound
(iCRLB) for the estimation of the global demixing-mixing
matrices, G[k] , W[k]A[k]. The calculation of the iCRLB
uses the Hessian of the IVA cost function evaluated at the
global minimum, which for the iid assumption is equivalent
to the Fisher information matrix associated with estimating
G. Due to space constraints, we directly present the final
form (computation is a generalization of the derivation in
[5]).

The Hessian possesses a tractable structure for analysis
with a form analogous that is block matrix expansion of the
Hessian for ICA. Namely, the Hessian can be permuted into
a block diagonal matrix where the first N block entries are of
dimensions K ×K and are given by Jn. For this paper, the
Jn matrices are not of interest. The remaining block entries
are of dimensions 2K × 2K and are given by

Jm,n ,

[
Km,n I

I Kn,m

]
, 1 ≤ m < n ≤ N, (5)

where I ∈ RK×K is the identity matrix,

Km,n , Γm ◦Rn, 1 ≤ m 6= n ≤ N,

Γm , E
{
φm (ym)φT

m (ym)
}

, and ◦ denotes the Hadamard
product. The form of the Hessian affirms that the separation
performance can be analyzed by considering sources pair-
wise. Additionally, for the Gaussian distribution Km,n =
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R−1
m ◦ Rn , since Γm = E

{
R−1
m ymyT

mR−1
m

}
= R−1

m . In
general, computing analytic expressions for Γm is nontrivial.

A common measure of BSS algorithm performance is the
interference to source ratio (ISR). It assesses the amount of
residual energy from each source that contributes to the en-
ergy of each estimated source. ISR is a convenient measure
because it is indifferent to the inherent scaling ambiguity in
BSS and it is an analytically tractable performance measure
that readily admits to derivation of the iCRLB (on ISR) for a
wide variety of BSS problems [5, 6, 7, 12]. For the general
form we can show that the iCRLB for an element of the ISR
matrix in IVA has the following form

ISRm,n6=m ≥ 1
V tr

((
Km,n −K−1

n,m

)−1
)
, (6)

where tr (·) is the trace operator,

ISRm,n ,
K∑
k=1

E

{(
g[k]
m,n

)2
}
, 1 ≤ m 6= n ≤ N,

gives the total energy of the nth source in the estimate of the
mth source in each dataset when the true sources are normal-
ized to have unit variance, and g[k]

m,n =
{
G[k]

}
m,n

is the entry

in the mth row and nth column of G[k]. Notice that (6) ex-
tends the ICA bounds given in [6, 7]. As shown in [13], mul-
tiple datasets add a diversity in IVA that mirrors the role of
sample-to-sample dependence that can be taken into account
in ICA besides higher-order statistics [2, 12, 14].

5. IVA USING KOTZ DISTRIBUTION

The two existing IVA implementations use two different
source distribution models. The first IVA algorithm [3],
IVA-Lap, uses the multivariate score function given by
φn (yn) = yn/

√
yT
nyn. The second IVA algorithm [5],

IVA-Gauss, uses the multivariate score function given by
φn (yn) = R−1

n yn, where Rn is the covariance matrix asso-
ciated with the actual SCV, i.e., Rn = E

{
snsTn

}
. This SCV

model requires that the SCV covariance matrix is estimated
as part of the IVA optimization procedure – note that the score
function used in IVA-Lap requires no distribution parameters.
In this section, we introduce the Kotz distribution family to
greatly expand the available multivariate SCV distribution
models for use in IVA.

The original introduction of the Kotz distribution [15] has
been further analyzed in the more readily accessible work of
[16]. The zero-mean K-dimensional real-valued Kotz distri-
bution has the following pdf

p (x;θ,Σ) =
βλνΓ (K/2)

(
xTΣ−1x

)η−1

√
πK det ΣΓ (ν)

e−λ(xTΣ−1x)
β

,

where Σ ∈ RK×K (dispersion matrix) is positive-definite,
θ = [β, η, λ]

T denotes the scalar Kotz distribution param-
eters, namely, λ > 0 (kurtosis parameter), β > 0 (shape

parameter), η > (2−K) /2 (hole parameter), , and we use
ν , (2η +K − 2) / (2β) > 0 for more compact notations.
The gamma function is denoted by Γ (·). The covariance ma-
trix for the Kotz distribution is given in [16],

R , E
{
xxT

}
=
λ−β

−1

K

Γ
(
ν + β−1

)
Γ (ν)

Σ. (7)

The set of distributions achieved by varying the Kotz pa-
rameters is vast and includes the MPE, which is sometimes
called a multivariate generalized Gaussian distribution, when
η = 1 and λ = 1/2. The hole parameter, η, can be used
to make the mode of the distribution occur at x 6= 0 when
η > 1.

The multivariate score function associated with the Kotz
distribution is,

φ (x) = 2
(

1− η + λβ
(
xTΣ−1x

)β) Σ−1x

xTΣ−1x
. (8)

By appropriately selecting the Kotz parameters we arrive at
the score function used in IVA-Gauss: φ (x) = R−1x when
θ = [1, 1, 1/2]

T and Σ = R; and in IVA-Lap: φ (x) =

x/
√

xTx when θ = [1/2, 1, 1/2]
T and Σ = I.

The multivariate Kotz distribution possesses several desir-
able properties for IVA. It is a distribution which generalizes
both IVA-Lap and IVA-Gauss, the score function is readily
calculated, and it extends the set of sources for which JBSS
can be performed. Thus, the Kotz distribution is appealing de-
spite it requiring additional parameters θ to estimate. The pre-
cise estimation of these parameters is difficult at best, yet for-
tunately for IVA, precise knowledge of these parameters is not
critical for successful JBSS (as is similarly the case in ICA).
One practical approach is to select the θ from set of Θ =
[θ1, . . . ,θP ] that achieves the lowest cost. This approach is
naturally accommodated in the decoupled vector optimization
framework. Lastly, the second-order correlation information
captured by the dispersion matrix, Σ, can be estimated subop-
timally via substitution of the sample average estimate for the
covariance matrix, R̂ = 1/V

∑V
v=1 x (v) xT (v) into (7).1

5.1. Multivariate Power Exponential

The MPE distribution, a subset of the Kotz distribution family,
is a general class in and of itself. Here, in this subsection, we
provide analytic results for the MPE source model. It can be
shown that for the MPE distributions, Γm = κmR−1

m , where

κm = κMPE ,

(
2β

KΓ( K2β )

)2

Γ
(
K−2+4β

2β

)
Γ
(
K+2
2β

)
, β > 0

and K ≥ 2. Furthermore, it also can be shown that κMPE ≥ 1
with equality only if the SCV is Gaussian distributed, i.e.,
β = 1. The proof of this property is provided in the appendix.

1The code for implementing such an algorithm is available at
http://mlsp.umbc.edu/resources.html.
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When two sources follow MPE distributions, we have

ISRm,n ≥ 1
V tr

((
κmR−1

m ◦Rn − κ−1
n

(
R−1
n ◦Rm

)−1
)−1

)
.

A case of particular interest is when both sources have iden-
tity covariance matrices, then the iCRLB becomes simply
V −1

(
κm − κ−1

n

)−1
, which is finite as long as κm 6= κ−1

n

and thus when (κm, κn) 6= (1, 1) holds, i.e., as long as one
source is non-Gaussian. This result is consistent with the
nonidentifiability conditions provided in [5].

6. SIMULATIONS

In this section, we consider the performance of the algorithm
presented in Section 5 using simulated datasets. The perfor-
mance of the proposed IVA algorithm is compared with the
iCRLB derived in Section 4.

For this experiment there are N = 3 SCVs, each gener-
ated from the same source distribution, namely, a zero-mean
K = 5 dimensional MPE random vector with shape param-
eter, β, and the identity covariance matrix. The kth entry of
each SCV is used as a latent source for the kth dataset. Entries
of the random mixing matrices, A[k], are from the standard
normal distribution.

We compute the theoretical iCRLB for ISR and compare
this value with the ISR achieved using the Kotz algorithm
with a priori knowledge about the shape, kurtosis, and hole
parameters. We then compute the total theoretical normalized
ISR, defined as,

ISR ,
N∑

m=1,n=1,m 6=n

V ISRm,n.

We compare this theoretical ISR with the average ISR com-
puted from 1000 independent trials of the algorithm as we
vary the number of samples per dataset, V .

Due to the presence of local minima in the IVA cost func-
tion for non-Gaussian sources [5], the algorithm may con-
verge to local minima. At local minima the sources are sepa-
rated within a dataset but the SCVs are not successfully iden-
tified, i.e., the permutation ambiguity is unresolved. Thus
we compare the iCRLB for the ISR with the median rather
than the mean. From Fig.1, the performance of the IVA al-
gorithm approaches the iCRLB as the sample size per dataset
increases. The large degradation in achieved ISR at β = 6
indicates a sensitivity for nearly uniform multivariate sources
when the sample size is small.

7. CONCLUSIONS

We have introduced a new family of source distributions for
use in IVA, namely the Kotz distribution family, which in-
cludes the distributions used in existing IVA algorithms. The
formulation for calculating the performance bounds of JBSS
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Fig. 1. The iCRLB theory for ISR as the shape parameter,
β, varies is compared to the median ISR of 1000 trials for
different numbers of iid samples, V .

using iid samples is given for the general case. In addition,
for the MPE family of distributions we provide the analytic
expression for the performance bounds.

A. APPENDIX

We make use of an inequality first shown in [17] involving
Gurland’s ratio,

T (u, v) ,
Γ (u) Γ (v)

Γ2 ((u+ v) /2)
, u, v > 0,

namely T (u− γ, u+ γ) ≥ 1 + γ2

u−γ , u > |γ|, where the
equality holds only when γ = 1, [18].

For K > 2, let z = K/2− 1 > 0, then

κMPE =
(ν − 1/β) (ν − 1/β + 1)

ν2
T (ν − 1/β, ν + 1/β)

≥ (ν − 1/β) (ν − 1/β + 1)

ν2

(
1 +

β−2

ν − 1/β

)
= 1 +

z

(z + 1)
2

(β − 1)
2

β
.

Since β > 0, then (β − 1)
2
β−1 ≥ 0 and thus κMPE ≥ 1.

For K = 2, we have that

dκMPE

dβ
=

2Γ (2ν)

Γ2 (ν)
(Ψ (ν + 1)−Ψ (2ν)) ,

where Ψ (x) , d ln Γ (x) /dx is the digamma function. Not-
ing that the derivative is positive (negative) when Ψ (ν + 1) >
(<) Ψ (2ν). Since Ψ (x) is a monotonic nondecreasing func-
tion of x [19], then we must have that the arguments have the
same relationship, i.e., β ≥ (<) 1 implies dκMPE/dβ ≥ (<) 0
with equality only when β = 1.
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