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ABSTRACT

A novel approach is proposed to extract high-rank patterns from

multiway data. The method is useful when signals comprise

collinear components or complex structural patterns. Alternating

least squares and multiplication algorithms are developed for the

new model with/without non negativity constraints. Experimental

results on synthetic data and real-world dataset confirm the validity

of the proposed model and algorithms.

Index Terms— CANDECOMP/PARAFAC (CP), Kronecker tensor

decomposition (KTD), PARALIND, block term decomposition, rank-overlap

1. PROBLEM FORMULATION

Tensor decompositions have become a valuable tool for anal-

ysis of data with multiple modes. The approach has found

numerous applications such as in chemometrics, telecommu-

nication, analysis of fMRI data, time-varying EEG spectrum,

data mining, classification, clustering and compression [1–3].

One major application of matrix/tensor decompositions is to

extract latent components from signals. Such analyses allow

a deeper understanding of signals, or discrimination of one

group of signals from others. For high order data (tensor),

the decompositions retrieve multiple factor matrices, each of

which comprises hidden components for each mode. For ex-

ample, we can have temporal, spectral and spatial components

for an order-3 tensor including time × frequency × channel.

Most existing decompositions assume one-to-one interaction

among basis components in factor matrices. For example, the

well-known CANDECOMP/PARAFAC (CP) decomposition

[4,5] approximates an order-N tensor Y of size I1×I2×· · ·×IN

by R rank-one tensors in which a component in a factor ma-

trix A(n) ∈ RIn×R has only one interaction with components in

other factor matrices, that is,

Y ≈

R∑

r=1

a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r = ~A(1)

,A(2)
, . . . ,A(N)

� (1)

where ◦ denotes the outer vector product. This simple as-

sumption unfortunately often cannot entirely characterize the
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data: hidden activities in real-world data can be generated by

several sources, and they themselves can activate several other

activities. For example, motor imagery activities in a BCI sys-

tem yield several rhythms which usually occur over the mo-

tor and sensory cortices of the brain. This linear dependence

problem also commonly appears in fluorescence excitation-

emission data, or in flow injection analysis (FIA) [6].

A well-known tensor decomposition which establishes

multi-interactions among components in factor matrices is

the Tucker decomposition [7]. However, this decomposition

allows too many interactions among components. One com-

ponent can be associated with all components in all factor

matrices except its own factor. To deal with the linear depen-

dence problem and especially the rank-overlap problem, R.

Bro et. al. proposed the structured CP decomposition (CPD)

with additional dependence matrices Qn which often consist

of zeros and ones [1, 6], that is,

Y ≈ ~A(1)Q1,A
(2)Q2, . . . ,A

(N)QN�. (2)

A partial uniqueness of FIA-type PARALIND with doubly

linear dependence was investigated in [6]. In another direc-

tion, L. de Lathauwer [8] restricted interactions among com-

ponents in sub tensors instead of completely spreading entries

of the core tensor in the Tucker decomposition, which leads

to the rank-(Lr, Lr, 1) block term decomposition (BTD) for

order-3 tensors, and the generalized rank-Lr ◦ rank-1 BTD [9]

Y ≈

R∑

r=1

(
A(1)

r A(2)T
r

)
◦ a

(3)
r . (3)

Indeed the rank-(Lr, Lr, 1) BTD is a particular PARALIND

with a specific dependence matrix. BTD leads to rank-overlap

in the third factor matrix in which each component is repli-

cated Lr times. Note that because of rank-overlap, estima-

tion of the first two factor matrices from order-3 tensors is

not unique. Partial uniqueness conditions of PARALIND for

order-3 tensors can be found in [10, 11].

In this paper, we formulate new structured CP decomposi-

tions for the decomposition of an order-N tensor into multiple

Kronecker terms [12]. The first new CP-like model has fac-

tor matrices in the Kronecker form (product) which allows

factorization of large-scale tensors with (very) high rank, say

R > 1000. The second CP model is a particular case of the
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former one, but it can be considered as generalization of the

PARALIND model for rank-overlap problems [6], or the BTD

model [10]. The models have been verified on both synthetic

and real data, using a real application for clustering.

2. NOVEL DECOMPOSITIONS

For a given multiway data Y of size I1 × I2 × · · · × IN , we

first consider the decomposition of this tensor into multiple

Kronecker product terms (KTD) of smaller scale tensors Ap

and Xp, for p = 1, 2, . . . , P [12]

Y ≈

P∑

p=1

Ap ⊗Xp, (4)

where ⊗ denotes the generalized Kronecker product between

two tensors Ap of size Jp1 × Jp2 × · · · × JpN and Xp of size

Kp1 × Kp2 × · · · × KpN such that In = Jpn Kpn [12]. Proper-

ties of the Kronecker tensor products are discussed in detailed

in [12, 13]. Fig. 1 illustrates KTD of an order-3 tensors. Ten-

sors Xp tile the entire data Y. Small patches represent details

of the tensor well, while large patterns capture smooth struc-

tures. Following this, we introduce a variation of this decom-

position, and establish a connection from it to the well-known

CP decomposition (1).

2.1. CPD with factor matrices in the Kronecker form

We assume that Ap and Xp are rank-Lp and rank-Mp tensors

in the Kruskal form [3], respectively, that is

Ap = ~U
(1)
p ,U

(2)
p , . . . ,U

(N)
p �, Xp = ~V

(1)
p ,V

(2)
p , . . . ,V

(N)
p �,

where U
(n)
p ∈ R

Jp1×Lp and V
(n)
p ∈ R

Kpn×Mp , for all n. The new

model is established in the following lemma.

Lemma 2.1 (CPD with factors in the Kronecker form). If
Ap and Xp are rank-Lp and rank-Mp tensors in the Kruskal
form, respectively, then the KTD model of Y is equivalent to

a CP decomposition of rank R =

P∑

p=1

Lp Mp given by

Y ≈ ~W(1)
,W(2)

, . . . ,W(N)
�, (5)

W(n) =
[
U

(n)

1
⊗ V

(n)

1
,U

(n)

2
⊗ V

(n)

2
, . . . ,U

(n)

P
⊗ V

(n)

P

]
∈ RIn×R

. (6)

The result implies an alternative interpretation and new

application of the KTD model in which sub tensors have low-

rank. Because the factors in the Kronecker form have a much

smaller number of parameters than in the full CP model, the

new model is suitable for high rank and large-scale tensors

(say R ≥ 1000).

2.2. Structured CPD with overlapped components

We consider a further simplification of the KTD model for

collinear components or rank-overlap. A particular case is

one in which Ap and Xp have singleton modes, i.e., Jn = 1

or Kn = 1 for all n = 1, 2, . . . ,N. For simplicity, we assume

K1 = . . . = KS = 1. This also means Jn = In, for n =

1, 2, . . . , S . U(n) = 1T
Lp

, for n = S + 1, . . . ,N and V(n) = 1T
Rp

,

for n = 1, . . . , S .

»
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Fig. 1. Illustration of the tensor decomposition of an order-3 tensor

Y ∈ RI1×I2×I3 into P terms of Kronecker tensor products of Ap, Xp,

and its particular case when Ap and Xp are rank-Lp and rank-Mp

tensors.

Lemma 2.2. When all Xp have S singleton modes (1 ≤ S <

N) with K1 = . . . = KS = 1 and Kn = In for n = S + 1, . . . ,N,

the KTD model in (4) and the CPD in (5) are simplified into

a structured CPD of factor matrices W(n) given by

W(n) =


Ũ(n) QL, n = 1, 2, . . . , S ,

Ṽ(n) QM , n = S + 1, . . . ,N,
(7)

Ũ(n) =
[
U

(n)

1
,U

(n)

2
, . . . ,U

(n)

P

]
, (8)

Ṽ(n) =
[
V

(n)

1
,V

(n)

2
, . . . ,V

(n)

P

]
, (9)

QL = blkdiag(IL1
⊗ 1T

M1
, IL2
⊗ 1T

M2
, . . . , ILP

⊗ 1T
MP

), (10)

QM = blkdiag(1
T
L1
⊗ IM1

, 1T
L2
⊗ IM2

, . . . , 1T
LP
⊗ IMP

). (11)

For this new decomposition, each component (column) of

U
(n)
p is replicated Mp times in W(n) for n ≤ S , and each com-

ponent of V
(n)
p is replicated Lp times in W(n) for n > S . Such

behavior is related to the rank-overlap problem which often

exists in real-world signals such as chemical data, flow injec-

tion analysis (FIA) data [1,6], or spectral tensors of EEG sig-

nals. The structured CPD in Lemma 2.2 is a particular case of

the CP model with linearly dependent loadings (PARALIND)

in (2) [6] in which the dependency matrices are fixed and

given in Lemma 2.2. Discussions on uniqueness of the CPD

with linearly dependent loadings can be found in [11, 14].

If all Xp are rank-1, i.e., Mp = 1, for all p, the KTD

model and the structured CPD model in Lemma 2.2 is simpli-

fied into the rank-(Lr, Lr, 1) block term decomposition (BTD)

for order-3 tensors [8], and the rank-Lr ◦ rank-1 BTD [9] (see

(3)).

3. ALGORITHMS

Algorithms for the generalized model (4) without specific

rank have been developed in [12]. For two simplified tensor

decompositions in Lemmas 2.1 and 2.2, CPD-like algorithms

can be efficiently used such as the ALS algorithm [6] (often

with line search extrapolation methods [15–17]) or the fast

damped Gauss-Newton algorithm [18]. For space reasons,

we present the ALS algorithm for the structured CPD in

Lemma 2.2 which sequentially updates Ũ(n) and Ṽ(n)

Ũ(n) ← GnQT
L

(
QL ΓnQT

L

)−1
, (n = 1, 2, . . . , S ), (12)
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Table 1. MSAE (in dB) in decomposition of random tensors

in Example 4.1.
Bipolar data Nonnegative data

SNR Approx.

Error

MSAE (dB) Approx.

Error

MSAE (dB)

(dB) U
(n)
p V

(n)
p U

(n)
p V

(n)
p

0 7.07 10−1 40.41 41.62 7.07 10−1 31.00 34.95

10 3.02 10−1 50.01 52.54 3.01 10−1 41.37 44.74

Inf 6.28 10−8 136.31 155.96 8.57 10−6 71.92 89.13

Ṽ(n) ← GnQT
M

(
QM ΓnQT

M

)−1
, (n = S + 1, . . . ,N), (13)

where Gn = Y(n)

(
W(N) ⊙ · · · ⊙W(n+1) ⊙W(n−1) ⊙ · · · ⊙W(1)

)
,

Γn =
(
W(1)T W(1)

)
⊛ · · ·⊛

(
W(n−1)T W(n−1)

)
⊛

(
W(n+1)T W(n+1)

)
⊛

· · · ⊛
(
W(N)T W(N)

)
, ⊙ and ⊛ denote the Khatri-Rao and

Hadamard product, respectively. With non negativity con-

straints, we can derive the multiplicative algorithm as fol-

lows [19–22]

Ũ(n)
← Ũ(n)

⊛

(
GnQT

L

)
⊘
(
Ũ(n) QL ΓnQT

L

)
, (n = 1, 2, . . . , S )

Ṽ(n) ← Ṽ(n)
⊛

(
GnQT

M

)
⊘
(
Ṽ(n) QM ΓnQT

M

)
, (n = S + 1, . . . ,N)

where ⊘ denote (element-wise) Hadamard division.

4. SIMULATIONS

4.1. Synthetic data

This example aimed to verify the correctness of the proposed

model in Lemma 2.2 for order-6 data synthetic tensors. The

tensors Y of size In = 10 for all n were composed from order-

3 tensors Ap and Xp with 3 singleton modes, i.e., S = 3, and

corrupted by Gaussian noise of SNR = 0 and 10 dB. Ranks of

sub tensors were set to [Lp] = [2, 2, 3] and [Mp] = [1, 2, 2].

We generated 60 noiseless tensors (30 tensors consisting of

nonnegative values), and 30 noisy tensors from each noise-

less one for each noise level. Hence, there were in total 3660

tensors. Factor matrices were initialized using random values.

Quality of the decompositions was evaluated through

mean square angular error (MSAE) between an estimated

component and its original one over multiple runs MSAE =

−10 log10(E[acos2 a
T

â

‖a‖ ‖â‖
]) dB [23, 24]. Table 1 summarized

the average approximation errors, and MSAEs for all compo-

nents of Ũ(n) and Ṽ(n). Note that an MSAE higher than 40 dB,

50 dB means that two components are different by a mutual

angle on average less than 0.57o, 0.18o, respectively. The

high performance of MSAE (in dB) confirms the efficiency

of the algorithm and the correctness of the proposed model.

4.2. Factorization of the ORL face database

This example demonstrated the superiority and the advan-

tages of the structured CPD in Lemma 2.2 or BTD to the

standard CPD in feature extraction. We used 100 faces for

the first 10 subjects in the ORL face database [25]. Images

o o o o
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Fig. 2. Example for clustering the ORL face dataset by dif-

ferent feature extraction models. Complexity of basis images

was varied according to their ranks (rank-1 to full-rank).

were down-sampled to the size of 28 × 23 to give an order-

3 tensor of size 28 × 23 × 100. By applying nonnegative

CPD, we can extract rank-one basis images u
(1)
r u

(2)T
r , each

of which was associated with a vector feature u
(3)
r , and ex-

pressed local structures as illustrated in Fig. 2(a). It is obvious

that such local rank-one structures did not fully reveal com-

mon patterns among all faces such as eyes, mouth, eyebrow,

forehead, nose which can be extracted by nonnegative matrix

factorization [2, 21, 22]. Fig. 2(c) illustrates full rank basis

images which expressed global and more complex structures,

obtained through the structured CPD with Lp = 23 for all p.

An important observation is that by varying rank of the basis

images from rank-one to full-rank, we can accordingly ex-

tract local simple or global complex structures. For example,

in Fig. 2(b), we extracted one rank-one basis image (L1 = 1),
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two rank-three basis images (L2 = L3 = 3) for eyebrow-nose

and forehead, and one last full-rank basis image (LP = 23) for

common background of facial images.

Based on the above observation, we considered simple de-

compositions with identical Lp and Mp = 1 for all p to extract

P = 10 nonnegative vector features from the facial tensor.

The model was simplified to rank-(Lp, Lp, 1) BTD [8] with

nonnegativity constraints

Y ≈

P∑

p=1

~U(1)
p ,U

(2)
p , vp 1T

Lp
�, (14)

where U
(1)
p ∈ R28×Lp , U

(2)
p ∈ R23×Lp and vp ∈ R

100, for all

p = 1, . . . , P. The ranks Lp were varied from within the range

[1, 23]. Vector features vp were associated with basis images

Fp = U
(1)
p U

(2)T
p of size 28 × 23 for p = 1, . . . , P. The multi-

plicative algorithm in section 3 was applied. Since the decom-

position could get stuck in local minima, for each rank Lp, we

factorized the tensor 40 times to find 40 sets of 10 vector fea-

tures. On the basis of extracted features, categorical labels of

images were first predicted using the k-means algorithm. The

final labels were then defined as the most frequent predicted

values. In Fig. 2(d), in addition to the accuracy and normal-

ized mutual information (NMI), we provide the Akaike Infor-

mation Criterion (AIC) for balancing the approximation error

and the number of estimated parameters for different mod-

els [26]. The results indicate that with Lp = 5, 6, 7, we can

achieve the clustering accuracy of 97% compared with the ac-

curacy of 92% using the simple CPD with Lp = Mp = 1 for

all p. Moreover the selected model also coincided with that

having the minimum AIC.

4.3. Factorization of EEG Motor Imagery Data

In this simulation, we emphasized the efficiency of high rank

structural pattern extraction as compared with the traditional

rank-1 basis component for factorization of high order tensor

which involves left/right motor imagery (MI) movements. We

analyzed the EEG MI dataset [27] for subjects 1 and 2. EEG

signals were transformed into the time-frequency domain us-

ing the complex Morlet wavelets CMOR6-1 giving an order-4

tensor of dimension 23 frequency bins (8-30 Hz) × 50 time

frames × 62 channels × 200 trials [28].

It is well-known that in preparation and imagination of

movement the mu and beta rhythms are desynchronized over

the contralateral sensory and motor areas [29]. However, in

practice, the EEG signals cannot comprise only one rhythm

at a specific frequency band during a fixed time frame, but

there exists groups of similar rhythms in the signals. Fig. 3

compares rank-1 (Lp = 1) and rank-5 (Lp = 5) spectrograms

extracted from the MI tensor. Rank-one spectral maps can

extract only the major activity of the MI signals, but cannot

capture a group of similar components. It is obvious that al-

though five spectral components in Fig. 3(b) explain rhythms

in the same frequency range, they are not identical. Moreover,
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Fig. 3. Comparison between basis spectral-temporal maps

which have rank-1 (a) and rank-5 (b) extracted from the MI

tensor.

their associated temporal components convey more informa-

tion than the rank-one temporal component in Fig. 3(a). Fi-

nally, according to the appearances of the spectrogram, the

higher rank spectrogram is more natural and realistic than

the one of rank-one. On the basis of extracted features from

P = 10 rank-one patterns channel × trial, i.e., S = 2, MI

activities were clustered with respect to left and right move-

ments. However, instead of using all the features, we selected

only 2-3 components related to the MI activities, that is, their

corresponding spatial components distributed over the con-

tralateral sensory and motor areas. The clustering accuracies

using CPD were 71% and 79.5% for subjects 1 and 2, respec-

tively. These accuracies can be improved up to 83.5% for

subject 1 with rank-5 basis spectrograms, and 85% for sub-

ject 2 using rank-7 basis spectrograms, respectively.

5. CONCLUSIONS

Here we introduce a method to decompose tensors into the

sum of Kronecker product terms of smaller scale tensors. This

allows us to represent multiway data in terms of components

of variable complexity depending on the rank of the smaller

tensors, which is set during the decomposition process. The

method can be used when there are collinear components (that

is, rank-overlap exists). An issue that needs to be better under-

stood for this method is the large, non-systematic fluctuations

in classification accuracy of real data when the rank of ex-

tracted components was varied (Fig. 2(d)). One controversy

related to biological signal processing in the brain is the extent

to which sensory signals are decomposed into either local or

global components. For example, for face processing in the

brain, there is a debate whether populations of neurons de-

compose the visual input into a set of local features (mouth,

nose, eyes, etc.) or into a more holistic representation [30].

The algorithm developed here allows the creation of basis sets

with graded degrees of complexity ranging from highly local

to highly global, expanding the conceptual possibilities when

analyzing or modeling neurophysiological and brain imaging

data. Selection of a suitable model for real-world data is still

an open issue, but can be efficiently solved using the greedy

method in [31].
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