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ABSTRACT

Bounded Component Analysis is a new framework for Blind

Source Separation problem. It allows separation of both de-

pendent and independent sources under the assumption about

the magnitude boundedness of sources. This article proposes

a novel Bounded Component Analysis optimization setting

for the separation of the convolutive mixtures of sources as

an extension of a recent geometric framework introduced for

the instantaneous mixing problem. It is shown that the global

maximizers of this setting are perfect separators. The article

also provides the iterative algorithm corresponding to this set-

ting and the numerical examples to illustrate its performance

especially for separating convolutive mixtures of sources that

are correlated in both space and time dimensions.

Index Terms— Convolutive Blind Source Separation,

Bounded Component Analysis, Independent Component

Analysis, Dependent Component Analysis.

1. INTRODUCTION

Blind Source Separation (BSS) is one of the basic problems in

signal processing and machine learning with a diverse set of

applications [1]. Independent Component Analysis approach,

which assumes and exploits the mutual independence among

sources, has been the most popular approach in efforts to ob-

tain solution to this problem [1, 2].

Following the works exploiting the boundedness of

sources within the ICA framework (e.g., [3–6]), Bounded

Component Analysis (BCA) has been recently introduced as

a new framework which allows separation of both dependent

and independent sources for bounded sources [7]. It exploits

the knowledge about the boundedness of sources to replace

the mutual independence assumption with a more generic

domain separability assumption. Therefore, the requirement

one the pdf separability in terms of products of marginals is

abandoned. Potential benefits of this new approach is mainly

twofold:
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• Under the standing source boundedness assumption, it
provides a more general framework for the separation

of both independent and dependent (even correlated)

sources.

• Moreover, even when the sources are independent,
short data records used for adaptation may not reflect

this behavior. Therefore, abandoning of the indepen-

dence assumption can provide performance improve-

ment for finite data records even for mutually indepen-

dent case.

In [8], a geometric framework for the construction of

BCA algorithms was introduced. The approach introduced in

this framework makes use of two geometric objects related

to separator output samples, namely principal hyper-ellipsoid

and bounding hyper-rectangle, and pose BCA problem as

optimization of the relative sizes of these objects. The frame-

work introduced in [8] was limited to memoryless, or instan-

taneous, mixtures. In this article, we extend this framework to

more general case of convolutive mixing, where the sources

can be mixed in both source and sample (space and time)

dimensions. The proposed convolutive BCA approach allows

separation of sources which can be potentially correlated in

both source and sample dimensions.

The organization of the article is as follows. In Section 2

we introduce the convolutive BCA setup that we use through-

out the article. In Section 3 the proposed convolutive BCA

approach is provided. The corresponding iterative algorithm

is provided in Section 4. Numerical examples to illustrate the

separation performance for especially the convolutive mix-

tures of space-time correlated sources are given in Section

5.

2. CONVOLUTIVE BCA SETUP

The components of the convolutive BCA setup that we con-

sider throughout the article are as follows:

• We assume a setup with p real sources. The sources
are represented by a vector of zero mean (without loss

of generality) wide sense stationary process {s(k) ∈
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"p ; k ∈ Z} which has the Power Spectral Density
(PSD) {Ps(f) ; f ∈ [− 1

2 ,
1
2 )}.

We further assume that the sources have bounded

ranges, i.e. si(k) ∈ [αi,βi] where αi,βi ∈ ",βi > αi

for i = 1, ..., p and k ∈ Z. We also define γi =
R(si) = βi − αi as the range of si. where R(·) is the
range operator which returns the support length for the

pdf of its argument. We decompose the sources as

s(k)
!
= Υs(k), k ∈ Z, (1)

where Υ = diag(γ1, γ2, . . . , γp) is the range matrix of
s and {s(k) ∈ "p ; k ∈ Z} is the normalized source
process whose components have unit ranges.

Unlike ICA, we do not assume that sources are inde-

pendent, or uncorrelated, which implies that Ps(f) is
allowed to be non-diagonal. We assume sources satisfy

BCA’s domain separability assumption [7], which is a

weaker assumption than independence and which can

be stated as follows:

– (A1) The (convex hulls of the) domain of the

sources can be written as the cartesian product

of (the convex hulls of the) the individual source

domains.

Furthermore, we do not assume independent identically

distributed (i.i.d.) samples for sources. The samples

can, in fact, be correlated, i.e., Ps(f) can vary with
frequency.

• The source signals are mixed by a MIMO system with
a q x p transfer matrix H(f), whose output is denoted
by {y(k) ∈ "q ; k ∈ Z}. We have

Y (f) = H(f)S(f), (2)

where Y (f) is the Discrete Time Fourier Trans-
form (DTFT) of {y(k) ∈ "q ; k ∈ Z}, S(f) is
the DTFT of {s(k) ∈ "p ; k ∈ Z} and H(f) =
∑L−1

l=0 H(l)e−j2πfl. We assume thatH(f) is an equal-
izable transfer function of order L− 1 [9].

• SeparatorW(f) is a q x p FIR transfer matrix of order
M − 1 and the separator output sequence is denoted by
{o(k) ∈ "p ; k ∈ Z} whose DTFT can be written as

O(f) = W(f)Y (f), (3)

whereW(f) =
∑M−1

l=0 W (l)e−j2πfl. We also define

W̃ =
[

W (0) W (1) . . . W (M − 1)
]

as the

separator coefficient matrix.

• The overall system function is defined as

G(f) = W(f)H(f) =
P−1
∑

l=0

G(l)e−j2πfl, (4)

where P − 1 is the order of overall system. Therefore,
the sources {s(k) ∈ "p ; k ∈ Z} and the separator
outputs {o(k) ∈ "p ; k ∈ Z} are related by

o(k) =
P−1
∑

l=0

G(l)s(k − l), k ∈ Z. (5)

Defining G̃ =
[

G(0) G(1) . . . G(P − 1)
]

and

s̃(k) =
[

s(k) s(k − 1) . . . s(k − P + 1)
]T
,

we have o(k) = G̃s̃(k), for k ∈ Z. We obtain the

range matrix of s̃ as Υ̃ = I ⊗Υ.

3. A CONVOLUTIVE BCA APPROACH

In this section, we will extend the instantaneous BCA ap-

proach introduced in [8] to the convolutive BSS separation

problem. The first objective function in [8], can be modified

as

J(W ) =
1

2

∫ 1
2

− 1
2

log(det(Po(f)))df − log

( p
∏

l=1

R(oi)

)

,

(6)

where Po(f) is the PSD of the separator output sequence.

In the proposed objective function, the only change is in the

log volume of the principal hyper-ellipse, i.e., the first term.

The principal hyper-ellipse volume definition is extended

from sample based correlation information to process based

correlation information, capturing inter-sample correlations.

The following theorem shows that the proposed objec-

tive is useful for achieving separation of convolutive mixtures

whose setup is outlined in Section 2.

Theorem: Assuming the setup in Section 2 andH(f) is
equalizable by an FIR separator matrix of order M − 1, the
set of global maxima for J in (6) is equal to a set of perfect
separator matrices.

Proof: Using the fact that

Po(f) = G(f)ΥPs(f)Υ
T
G(f)H ,

we obtain

∫ 1
2

− 1
2

log(det(Po(f)))df =

∫ 1
2

− 1
2

log
(

|det(G(f)Υ)|2det(Ps(f))
)

df =

∫ 1
2

− 1
2

log
(

|det(G(f)Υ)|2
)

df +

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df.

(7)
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Using the Hadamard inequality [10] yields

∫ 1
2

− 1
2

log
(

|det(G(f)Υ)|2
)

df ≤

∫ 1
2

− 1
2

log

(

p
∏

m=1

|| (G(f)Υ)m,: ||
2
2

)

df =

∫ 1
2

− 1
2

p
∑

m=1

log
(

|| (G(f)Υ)m,: ||
2
2

)

df =

p
∑

m=1

∫ 1
2

− 1
2

log
(

|| (G(f)Υ)m,: ||
2
2

)

df, (8)

where (G(f)Υ)m,: is them
th row of G(f)Υ. From Jensen’s

inequality [11], form = 1, ..., p, we have

∫ 1
2

− 1
2

log
(

|| (G(f)Υ)m,: ||
2
2

)

df ≤

log

(

∫ 1
2

− 1
2

|| (G(f)Υ)m,: ||
2
2df

)

. (9)

The use of Parseval’s theorem yields

∫ 1
2

− 1
2

|| (G(f)Υ)m,: ||
2
2df = ||(G̃Υ̃)m,:||

2
2. (10)

Thus, from (8-10), we obtain

∫ 1
2

− 1
2

log
(

|det(G(f)Υ)|2
)

df ≤
p

∑

m=1

log
(

||(G̃Υ̃)m,:||
2
2

)

,

(11)

which further implies,

∫ 1
2

− 1
2

log(det(Po(f)))df ≤
p

∑

m=1

log
(

||(G̃Υ̃)m,:||
2
2

)

+

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df. (12)

As a result,

J(W ) ≤
1

2

p
∑

m=1

log
(

||(G̃Υ̃)m,:||
2
2

)

− log

( p
∏

l=1

R(oi)

)

+
1

2

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df. (13)

Under the BCA’s domain separability assumption (A1) stated

in Section 2, we can write the range of ith component of o

as R(oi) = ||G̃i,:Υ̃||1. We can further define Q
!
= G̃Υ̃, the

range vector for the separator outputs can be rewritten as

R(o) =
[

||Q1,:||1 ||Q2,:||1 ... ||Qm,:||1
]

. (14)

If we rewrite the inequality (13) in terms ofQ we obtain

J(W ) ≤
p

∑

m=1

log
(

||Qm,:||2
)

− log

(

p
∏

m=1

||Qm,:||1

)

,

+
1

2

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df

=
p

∑

m=1

log
(

||Qm,:||2
)

−
p

∑

m=1

log
(

||Qm,:||1
)

+
1

2

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df. (15)

Note that,

p
∑

m=1

log
(

||(Qm,:)||2
)

≤
p

∑

m=1

log
(

||Qm,:||1
)

, (16)

due to the ordering ||q||1 ≥ ||q||2 for any q. Therefore,

J(W ) ≤
1

2

∫ 1
2

− 1
2

log
(

det(Ps(f))
)

df. (17)

The inequality in (16) is achieved if and only if each row

ofQ has only one non-zero element which results in each row

of G̃ has only one non-zero element. The inequality in (8) is

achieved if and only if the rows of G(f) are perpendicular to
each other which yields that the rows of G̃ should be perpen-

dicular to each other and the non-zero elements should not be

positioned in the same indexes with respect to mod p.
As a result, the inequality in (17) is achieved if and only if

G̃ corresponds to perfect separator transfer matrix in the form

G(z) = diag(α1z
−d1,α2z

−d2, . . . ,αpz
−dp)P

where αk’s are non-zero real scalings, and dk’s are non-
negative integer delays. The FIR equalizability of the mixing

system implies the existence of such parameters.

4. ADAPTIVE IMPLEMENTATION

In this section, we provide the adaptive algorithm correspond-

ing to the optimization setting in (6). In the adaptive imple-

mentation, we assume a set of finite observations of mixtures

{y(0),y(1), ...,y(N − 1)} and modify the objective as

J(W) =
ν

∑

l=−ν

1

2η
log(det(P̂o(l)))− log

(

p
∏

l=1

R̂(oi)

)

,

(18)

where ν = N +M − 1, η = 2ν + 1 is the DFT size and we
use the PSD estimate for the separator outputs given by

P̂o(l) =
ν
∑

k=−ν

R̂o(k)e
−j2πlk/η, (19)
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for l ∈ {−ν, ..., ν}, where N is the number of samples and

R̂o is the output sample autocovariance function, defined as

R̂o(k) =
1

ν + 1− |k|

min(ν,ν−k)
∑

q=max(0,−k)

o(q)oT (q + k), (20)

for k = −ν, ..., ν. We point out that we use R̂(o) for the
range vector of the sample outputs for which we have

R̂(oi) = max
k∈{1,2,...,N}

oi(k)− min
k∈{1,2,...,N}

oi(k), (21)

for i = 1, 2, ..., p. Note that the derivative of the first part of
J(W ) with respect toW (n) is

1

2η

∂
∑ν

l=−ν log(det(P̂o(l)))

∂W(n)
=

1

η

ν
∑

l=−ν

"e
{

P̂o(l)
−1

Ŵ(l)P̂y(l)e
j2πnl/η

}

, (22)

where

Ŵ(l) =
ν
∑

k=−ν

W (k)e−j2πlk/η, (23)

and

P̂y(l) =
ν
∑

k=−ν

R̂y(k)e
−j2πlk/η. (24)

Therefore, the iterative update equation is as

W (i+1)(n) = W (i)(n)

+ µ(i)

(

1

η

ν
∑

l=−ν

"e
{

P̂o(l)
−1

Ŵ(l)P̂y(l)e
j2πnl/η

}

−
p

∑

m=1

1

eTmR̂(oW(i))
em

(

y(lmax(i)
m )− y(lmin(i)

m )
)

)

, (25)

where µ(i) is the step-size at the ith iteration and l
max(i)
m

(l
min(i)
m ) is the sample index for which the maximum (min-

imum) value for the mth separator output is achieved at the

ith iteration.

5. NUMERICAL EXAMPLES AND CONCLUSION

We consider the following scenario to illustrate the sepa-

ration capability of the proposed algorithm for the convo-

lutive mixtures of space-time correlated sources: In order

to generate space-time correlated sources, we first gen-

erate a samples of a τp size vector, d, with zero-mean

adjusted Copula-t distribution, a perfect tool for generat-

ing vectors with controlled correlation, with 4 degrees of
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Fig. 1. Dependent convolutive mixtures separation perfor-

mance results

freedom whose correlation matrix parameter is given by

R = Rt⊗Rs whereRt (Rs) is a Toeplitz matrix whose first

row is
[

1 ρt . . . ρτ−1
t

]

(
[

1 ρs . . . ρp−1
s

]

).

Each sample of d is partitioned to produce source vec-

tors, d(k) =
[

s(kτ) s(kτ + 1) . . . s((k + 1)τ − 1)
]

.

Therefore, we obtain the source vectors as samples of a wide-

sense cyclostationary1 process whose correlation structure

in time direction and space directions are governed by the

parameters ρt and ρs, respectively.

In the simulations, we considered a scenario with 3
sources and 5 mixtures, an i.i.d. Gaussian convolutive mix-
ing system with order 3 and a separator of order 5. At each
run, we generate 50000 source vectors where τ is set as
5. Figure 1 shows the output total Signal energy to total

Interference+Noise energy (over all outputs) Ratio (SINR)

obtained for the proposed approach for two different SNRs

(45dB and 20dB), and various space and time correlation

parameters. SINR performance of Minimum Mean Square

Error (MMSE) filter of the same order, which uses full in-

formation about mixing system and source/noise statistics, is

also shown to evaluate the relative success of the proposed

approach. These results demonstrate that the proposed algo-

rithm’s performance closely follows its MMSE counterpart

for a wide range of correlation values. Therefore, we ob-

tain a convolutive extension of the BCA approach introduced

in [8], which is capable of separating convolutive mixtures of

space-time correlated sources.

1This actually violates the stationarity assumption on sources when ρt !=
0. However, we still use this as a convenient method to generate space-time

correlated sources
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