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ABSTRACT

We present a novel modification to the well-known infomax algo-
rithm of blind source separation. Under natural gradient descent, the
infomax algorithm converges to a stationary point of a limiting or-
dinary differential equation. However, due to the presence of saddle
points or local minima of the corresponding likelihood function, the
algorithm may be trapped around these “bad” stationary points for a
long time, especially if the initial data are near them. To speed up
convergence, we propose to add a sequence of random perturbations
to the infomax algorithm to “shake” the iterating sequence so that it
is “captured” by a path descending to a more stable stationary point.
We analyze the convergence of the randomly perturbed algorithm,
and illustrate its fast convergence through numerical examples on
blind demixing of stochastic signals. The examples have analyti-
cal structures so that saddle points or local minima of the likelihood
functions are explicit.

Index Terms— Blind source separation, unstable equilibria,
randomly perturbed infomax method.

1. INTRODUCTION

Blind source separation (BSS) aims at recovering a set of indepen-
dent source signals from the observations of their mixtures with-
out knowledge of mixing. It has been an active area of research
in signal and image processing literature [1–4] among others. For
example, various algorithms have been developed based on mini-
mizing mutual information (MMI) [1], information maximization
(infomax) [2] and Maximum Likelihood (ML) approach [5]. For
simplicity, we shall consider the instantaneous linear mixture model
of d observations of d signals. The observed signals x can be rep-
resented by x = As, where A is a d × d invertible mixing matrix,
s = [s1, . . . , sd]T is a source signal with mutually independent com-
ponents. Assuming that the joint probability density function (pdf)
of the source is known as r(s) = Πd

i=1ri(si), infomax and ML ap-
proaches provide an estimator of A, by maximizing the likelihood
function

L(A) = E[log r(A−1x)/|det(A)|].
In practice, the pdf of the source signals may not be known, so hy-
pothetical pdf’s qi(·) are used as substitutes of ri(·). Letting W =
A−1, the likelihood function becomes

J(W ) = E[log q(Wx)] + log |det(W )|,

where q(x) = (q1(x1), . . . , qd(xd)). Experience has shown that
maximizing this alternative likelihood function still yields good
demixing matrices as long as the true and hypothetical pdf’s do not
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differ too much. Let Y = W x = (y1, . . . , yd)T denote the recov-
ered source vector and x(i) denote the i-th sample of the mixture
signal x. The associated algorithm is given by

W (n+ 1) = W (n) + ν(I − F (n))W (n), (1)

whereF (n) = 1
L

∑(n+1)L
i=nL+1 f(Y n(i))Y n(i)T , Y n(i) = W (n)x(i),

f(Y ) = (f1(y1), . . . , fd(yd))T and fj(u) = −q′j(u)/qj(u). We
say that W is a demixing matrix if it is such that WA = PΛ, where
P is a permutation matrix and Λ is an invertible diagonal matrix.
An equilibrium Weq of this learning rule satisfies the steady state
equation:

E[f(Y )Y T ]− I = E[f(W x)(W x)T ]− I = 0, (2)

where the expectation can be theoretically carried out with pdf func-
tion of the source signals, or approximated from data x. The left
hand side of (2) is a function of W . We define the function:

g(W ) := E{I − f(W x)(W x)T }, (3)

then (2) is just g(W ) = 0.
To ensure the convergence to a good demixing matrix, one usu-

ally examines the stability of the limiting demixing matrix. In the lit-
erature, there are many studies on the convergence properties of the
algorithm near equilibria [6]. The stability condition in the neigh-
borhood of an equilibrium is well studied, however, the analysis of
the global convergence is much more complicated. Recently, [7]
constructed examples where global maximizers are spurious equi-
libria which do not separate the signals at all. Even if the algorithm
converges to the desired separating solution under the stability con-
dition, there may exist an unstable equilibrium to cause slow conver-
gence. In [8], an explicit formula of equilibria is found for the two
source separation problem when f is a cubic nonlinearity. It shows
that a set of saddle points always exists. Though the algorithm does
not converge to these “bad” points, they tend to slow down the con-
vergence dramatically. The reason is that the gradient descent as
the driving force of the algorithm becomes very small when the iter-
ates wander around these undesired equilibria points. To avoid such
problem, one may increase the step size (learning rate) ν to help
the algorithm leave these unstable points at the cost of introducing
larger errors. To speed up convergence without sacrificing accuracy,
some work has been done on variable step size [9]. However, this
method is computationally more complex than our proposed remedy
below of injecting random perturbations. Systematic expositions of
random perturbation methods in the context of stochastic approxima-
tion theory can be found in [10]. The idea is to “shake the iterative
sequence” until it is “captured” by a path descending to a more stable
point, see Figure 1 for an illustration. We will show that a suitable
random perturbation of the basic algorithm does not alter its conver-
gence property and equilibria, however it exhibits more robustness to

3218978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



initial data and fast convergence. The perturbed algorithm is found
numerically to speed up convergence significantly in neighborhoods
of unstable equilibria (e.g. saddle points) while maintaining the rate
of convergence near stable equilibria.

The paper is organized as follows. Section 2 presents the math-
ematical analysis of the convergence of our randomly perturbed in-
fomax algorithm. Section 3 gives examples of the unstable equilib-
rium points of the algorithm. Section 4 investigates the performance
of this new algorithm via numerical examples. Concluding remarks
are in section 5.
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Fig. 1. An illustration of the random perturbation method near a
saddle point.

2. ANALYSIS OF CONVERGENCE

The randomly perturbed infomax algorithm is:

W (n+ 1) = W (n) + ν(I − F (n))W (n), n 6= εk, any k,
W (n+ 1) = W (n) + ν(I − F (n))W (n) + bkχk, n = εk,

F (n) = 1
L

∑(n+1)L
i=nL f(Y n(i))Y n(i)T ,

(4)
where ν is the step size, εk is a sequence of integers going to in-
finity. The mixture signal is divided into blocks in time, each of
which contains L data points. Define t0 = 0, tn =

∑n−1
k=0 νk,

Tk = tεk+1 − tεk , such that Tk → ∞. Let {χk} be a sequence of
independent identically distributed (i.i.d) random matrices in Rd×d

whose entries are uniformly distributed on the interval [−1, 1], and
let {bk} be a sequence of positive numbers tending to 0. We assume
that the input x(i) is a well-mixed stochastic process and that f(·)
is a continuous nonlinear function, the case of most commonly used
nonlinearities [3].

To analyze the convergence of this perturbed algorithm, we con-
sider a variant of (4) by replacing ν by νn and F (n) by

F (n) =
1

Ln

Sn+1∑
i=Sn+1

f(Y n(i))Y n(i)T ,

where νn is a sequence such that
∑∞

k=1 νk = ∞ and
∑∞

k=1 ν
2
k <

∞, Lk is an increasing sequence of integers, Sn =
∑n

i=1 Lk. Here
we choose decreasing step size νk and increasing block size Lk for
the simplicity of convergence proof. In practice, we use constant ν
and L in (4).

Let us define the associated interpolated process:

W 0(t) = W (k), for tk < t < tk+1,
Wn(t) = W 0(tn + t), t ∈ (−∞,∞),

where we define t0 = 0, tn =
∑n−1

k=0 νk and m(t) to be the unique
value of n such that tn ≤ t < tn+1. Then Wn(t) can be written as

Wn(t) = W (n) +

m(tn+t)−1∑
i=n

νiZi

+
∑

k:n≤εk≤m(tn+t)

bkχk = W (n) + Zn(t) + pn(t),

where

pn(t) =
∑

k:n≤εk≤m(tn+t) bkχk,

Zn = (I − 1
Ln

∑Sn+1

i=Sn+1 f(Y n(i))Y n(i)T )W (n),

Z0(t) =
∑m(t)−1

i=1 νiZi,

Zn(t) = Z0(tn + t)− Z0(tn) =
∑m(tn+t)−1

i=n νiZi, t ≥ 0.

We have the following

Lemma 2.1 Denote βk = (I − 1
Lk

∑Sn+1

i=Sn+1 f(Y k(i))Y k(i)T )−
g(W (k)), then

∑
k νk|βk| < ∞ almost surely. The perturbation

process pn(t) converges to zero.

Proof. Let us first consider that the samples of the mixture sig-
nal, x(i), i = 1, 2, . . . , are i.i.d. Hence Y k(i), i = 1, 2, . . . , and
f(Y k(i)), i = 1, 2, . . . , are also i.i.d sequences with bounded vari-
ance. By the uniform law of large numbers [11] and the continuity of
f , limk→∞(I− 1

Lk

∑Sn+1

i=Sn+1 f(Y k(i))Y k(i)T )−g(W (k))→ 0.

Moreover, by the large deviation theory [12], this convergence is ex-
ponentially fast. Hence,

∑
k νk|βk| < ∞. We have pn(t) → 0,

since Tk → ∞ and bk → 0. The results also hold if x(i)’s satisfy
suitable mixing condition in lieu of i.i.d, see [13], we skip the details
here. �.

With this lemma, we prove the following

Theorem 2.2 There is a set N of probability zero such that for ω 6∈
N, the set of functions {Wn(ω, ·), n < ∞} is equicontinuous. Let
W (ω, ·) be the limit of a convergent subsequence. Then it satisfies
the ordinary differential equation (ODE)

Ẇ = g(W )W. (5)

The iteratesWn(ω) converge to the stationary set S of ODE (5). The
set S is a union of finite disjoint compact subsets S1, . . . , SN . More-
over,Wn(ω) converge to a unique stationary point set Si, consisting
of stationary solutions of (2).

Proof. First, we show the equicontinuity of the interpolated process.
Note that

Wn(t) = W (n) +

m(t+tn)−1∑
i=n

νiZi + pn(t)

= W (n) +

m(t+tn)−1∑
i=n

νi(g(W (i)) + β(i))W (i) + pn(t)

= W (n) +

m(t+tn)−1∑
i=n

νig(W (i))W (i)

+

m(t+tn)−1∑
i=n

νiβ(i)W (i) + pn(t)

(6)
Since Wn(·) is defined as a piecewise constant function, (6) can be
rewritten as

Wn(t) = W (n)+

∫ t

0

g(Wn(s))Wn(s)ds+pn(t)+Bn(t)+En(t),

(7)
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where En(t) is the error due to the replacement of the first sum by
an integral. Note that En(t) = 0 at time points t = tk − tn, k > n,
at which the interpolated processes have jumps, and En(t) → 0
uniformly in t as n → ∞. In (7), Bn(t) is defined similarly as
Zn(t) by

Bn =
∑m(t+tn)−1

i=n νiβ(i)W (i),

B0(t) =
∑m(t)−1

i=1 νiBi,

Bk(t) = B0(tk + t)−B0(tk) =
∑m(tk+t)−1

i=k νiBi, t ≥ 0.

By Lemma 2.1, there is a null set N such that for ω 6∈ N, En(ω, ·)
goes to zero uniformly on any bounded interval as n → ∞, also
pn(t) → 0 as n → ∞. Let ω 6∈ N, then the functions on the right
hand side of (7) are equicontinuous in n with the limits of Bn(·)
and En(·) being zero. By the Arzela- Ascoli Theorem [10], there
is a convergent subsequence {Wnk (ω, ·} for ω 6∈ N. We denote
the limit by W (ω, ·). It is easily seen that the limit must satisfy the
following equation:

W (ω, t) = W (ω, 0) +
∫ t

0
g(W (ω, s))W (ω, s)ds.

Define the cost function G(W ) = −J(W ). By the derivation of
the natural gradient [3], g(W ) can be written as the gradient of the
objective function J(W ) = −G(W ), i.e. g(W ) = −∂G(W )/∂W,
where ∂G/∂W is a d × d matrix whose entries are ∂G/∂wij .
Then the set of stationary points of (5) can be divided into disjoint
compact and connected subsets Si, i = 0, . . . , N, see [10, Sec
5.2]. The derivative of G(W (·)) along the solution W of (5) is
−(∂G/∂W )T (∂G/∂W ) ≤ 0. Using G(·) as a Liapunov function,
we can show that Wn(t) must converge to some stationary point. It
follows that Wn(t) converge to a unique Si, otherwise the resulting
path would oscillate between distinct Si’s, implying the existence of
limit points outside of the stationary points. �

Remark 2.3 Our proposed algorithm can also be applied to the it-
erations under the whiteness constraint [14], i.e., E[Y Y T ] = I
and E[f(Y )Y T − Y f(Y )T ] = 0. In this case, we just need to
replace F (n) in (4) by F (n) = 1

L

∑(n+1)L
i=nL+1(f(Y n(i))Y n(i)T −

Y n(i)f(Y n(i))T +Y n(i)Y n(i)T ). The convergence proof remains
the same.

3. EXAMPLES OF UNSTABLE STATIONARY POINTS

In this section, we give examples of unstable equilibria. We know
that an equilibrium of the infomax algorithm is a solution of E[I −
f(Y )T f(Y )] = 0, or a solution of E[I − Y Y T + f(Y )Y T −
Y f(Y )T ] = 0 under whiteness constraint. The stability conditions
of W are given in [6] by

1 + κi > 0, for1 ≤ i ≤ r
(1 + κi)(1 + κj) > 1, for1 ≤ i < j ≤ n,

or under whiteness constraint

κi + κj > 0, for1 ≤ i < j ≤ 0,

where κi = E[f ′i(yi)]E[y2i ]−E[fi(yi) yi]. In the following exam-
ples, we consider 2 uniformly distributed source signals under cubic
nonlinearity. It easily check that demixingW is a stable equilibrium.
However, there also exist unstable equilibria.

Example 1. Consider the two dimensional independent source s =
(s1, s2)T drawn from uniform distribution on [−1, 1] and the non-
linearity of the learning rule being f(x) = x3. Let the mixing ma-

trix be A =

[
1 1
−1 1

]
. Denote the demixing matrix by W =[

w11 w12

w21 w22

]
. The recovered source is Y = [y1y2]T = WAs.

Plugging these expressions into equation (2) or

E

[
1− y41 y31y2
y32y1 1− y42

]
= 0, (8)

carrying out the expectations, one solves for W [8]. There are 16
equilibria points listed explicitly in the following table. We see that

Table 1. Equilibrium Points
w11 w12 w21 w22

A1-8 0 151/4/2 151/4/2 0

unstable 151/4/2 0 0 151/4/2

equilibrium 0 151/4/2 −151/4/2 0

points 151/4/2 0 0 −151/4/2

−151/4/2 0 0 151/4/2

0 −151/4/2 151/4/2 0

−151/4/2 0 0 −151/4/2

0 −151/4/2 −151/4/2 0

B1- 8 −51/4/2 51/4/2 51/4/2 51/4/2

stable 51/4/2 −51/4/2 51/4/2 51/4/2

equilibrium 51/4/2 51/4/2 −51/4/2 51/4/2

points 51/4/2 51/4/2 51/4/2 −51/4/2

−51/4/2 −51/4/2 −51/4/2 51/4/2

51/4/2 −51/4/2 −51/4/2 −51/4/2

−51/4/2 51/4/2 −51/4/2 −51/4/2

−51/4/2 −51/4/2 51/4/2 −51/4/2

there are two sets of equilibria. Set A consists of solutions which
are unstable equilibria and are not separating matrices. Set B con-
sists of stable equilibria which are demixing matrices up to scaling
and permutation. We also calculated the eigenvalues of the Jacobian
from linearization of the ODE (5) of (w11, w12, w21, w22)T at each
equilibrium point. We observe that the equilibria in set A are saddle

Table 2. Eigenvalues of Jacobian Matrix at Equilibria of Table 1
λ1 λ2 λ3 λ4

Eigenvalues at A’s -4.000 -4.000 -1.500 0.500
Eigenvalues at B’s -4.000 -4.000 -2.667 -0.667

points since one of the four eigenvalues is positive. Note that equi-
libria A still attract the iterates in three directions except the fourth
direction along which there is only a weak force to keep the iteration
off. That is why the iterates can be trapped around set A for a long
time.

Next, we give an example of the algorithm under whiteness con-
straint.

Example 2. Consider two source signal distributed uniformly on
[−
√

3,
√

3] with variance 1. The nonlinearity for the learning rule
is f(x) = x3. In this case, the transfer matrix WA is a rotation or
reflection given by

WA =

(
cos(θ) sin(θ)
± sin(θ) ∓ cos(θ)

)
.
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The objective function can be written as

J(θ) = E[log q(y1(θ))] + E[log q(y2(θ))].

The algorithm is separating successfully if it has local maxima only
at kπ/2. A sketch of the objective function is in Fig. 2. It can be

0 pi/4 pi/2
−0.14

−0.13

−0.12

−0.11

−0.1

Fig. 2. Objective function for algorithm under whiteness constraint.

seen that θ = 0, π/2 are solutions corresponding to stable station-
ary points, while θ = π/4 is a local minimum corresponding to an
unstable stationary point.

4. NUMERICAL SIMULATIONS

From the above section, we see that there are unstable equilibria
which are saddle points or local minimizers of J . In the following,
we simulate the original algorithm to see how it performs around
these unstable equilibria. By comparing with the perturbed algo-
rithm, we find that random perturbations improve the convergence
very well. We shall measure the performance by ICI index defined
as

ICIk = (

n∑
i=1

n∑
j=1

|wij |2

maxl wil(k)
)− n.

Example 1. To simulate Example 1 of section 3, we set step size
ν = 0.001 and L = 10. Let εk = k(k − 1)/2 + 1, bk = 1/k2

and let χk be 2 × 2 random matrices whose elements are drawn in-
dependently from uniform distribution on [−1, 1]. Let the algorithm
start from identity matrix I2, which is common for most algorithms.
However, this is not a good initial value in this example, since I2 is
close to the saddle points in table 3. Figure 3 shows the ICI index
after 4000 iterations. The original algorithm does not appear to con-
verge in 4000 iterations (or very slow convergence). The randomly
perturbed algorithm converges more rapidly after about 500 itera-
tions. Figure 4 shows the convergence path for each component of
W under original algorithm and perturbed algorithm respectively.
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Fig. 3. Comparison of the original and randomly perturbed infomax
algorithms built from relative (natural) gradients.

Example 2. We simulate Example 2 of section 3 with the infomax
algorithms under whiteness constraint. The step size ν = 0.002,
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Fig. 4. Convergence paths for demixing matrix W under infomax
algorithm (a) and randomly perturbed infomax algorithm (b) built
from relative (natural) gradients.

L = 10 and the mixing matrix A =

[
1 −4
1 1

]
. We use pertur-

bations εk = k(k − 1)/2 + 1, bk = 1/k and χk the 2 × 2 random
matrices whose elements are uniformly distributed on [−1, 1]. Set-
ting the initial value W (1) = I2. Figure 5 shows the comparison of
the ICI index of the original and the randomly perturbed algorithms
under whiteness constraint. The original algorithm almost does not
converge, while the randomly perturbed one achieves convergence
immediately after about 50 iterations.
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Fig. 5. Comparison of the original (relative/natural gradient) and the
randomly perturbed infomax algorithms under whiteness constraint.

5. CONCLUSIONS

We showed that the existence of unstable equilibria may slow down
the convergence of infomax learning algorithm tremendously. We
analyzed convergence of a randomly perturbed infomax algorithm
and showed by numerical simulations that it achieves fast conver-
gence even when starting around unstable equilibria. The selection
of noise types for fast convergence, and the extension of our work to
convolutive mixtures [15, 16] will be left for future research.
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