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ABSTRACT

We present JaCHMM, a Java implementation of a condi-
tioned Hidden Markov Model (CHMM), which is made
available under BSD license. It is based on the open source
library “Jahmm” and provides implementations of the Viterbi,
Forward-Backward, Baum-Welch and K-Means algorithms,
all adapted for the CHMM. Like the Hidden Markov Model
(HMM), the CHMM may be applied to a wide range of
uni- and multimodal classification problems. The library is
intended for academic and scientific purposes but may be
also used in commercial systems. As a proof of concept,
the JaCHMM library is successfully applied to speech-based
emotion recognition outperforming HMM- and SVM-based
approaches.

Index Terms— statistical machine learning library, emo-
tion recognition, spoken dialogue systems

1. INTRODUCTION AND RELATED PRIOR WORK

Recent developments in the field of consumer electronics
have brought speech-based human-computer interaction to a
broad audience. Digital companions such as Apple’s SIRI
or TrueKnowledge’s EVI have shown that speech and tactile
interaction may easily go together. While these and other
Spoken Dialogue Systems (SDSs) have made large progress
in recent years, those systems are still mainly static in terms
of what they prompt to the user and static in terms of how
they treat the user notwithstanding the user-specific proper-
ties and the course of the previous conversation. The rising
complexity of SDS demands for innovative techniques that
help rendering future systems interaction-aware for enabling
adaptivity. Ultimately, this will lead to more natural interac-
tions, higher acceptance and raised usability of SDS. With
the knowledge gained during the interaction, a dialog system
would be capable of adapting its strategy, similar as a real,
human dialogue partner.

Pattern recognition techniques are the driving force be-
hind modeling and classifying human-machine interaction
and human behavior. Therefore, powerful algorithms and
software libraries are required to advance adaptivity in uni-

and multimodal dialogue systems. They allow for recogniz-
ing (and finally adapting to) the user. With the help of trained
data-driven, stochastic models, specific target variables may
be predicted, which are part of static user properties, e.g.,
the gender and age of the user, or dynamic user properties
like the emotional state, the intoxication level, or the user’s
current interest level in a task.

Discriminative classifiers are commonly used for classifi-
cation of static feature vectors, such as Artificial Neural Net-
works (ANN), Support Vector Machines (SVM) (Vapnik [1])
or rule learners. For classifying sequential information, such
as in speech or gesture recognition, Hidden Markov Models
(HMMs) have shown superior results (e.g., Rabiner et al. [2]).
For work on speech-based emotion recognition, which is, de-
spite its sequential character, mainly based on static feature
vector models (e.g., Schmitt et al. [3, 4]) with Hidden Markov
Models playing only a minor role (e.g., Schuller et al. [5]),
we explore the use of Conditioned Hidden Markov Models
(CHMMs), originally published by Glodek et al. [6]. While
CHMMs may be applied to the same types of tasks as classi-
cal HMMs, they offer essential advantages:

• Class probabilities: A CHMM directly provides a
class probability p(y|x(n), λ) instead of an output prob-
ability p(x(n)|λ). For the latter, multi-class recognition
is usually performed by instantiating a model for each
class separately. (Here, y are the class labels, x(n) the
observation sequence and λ the set of model parame-
ters.)

• Extra training data: As all classes are combined in
one single model in the CHMM, hidden states can be
shared by several labels thus taking advantage of extra
training data.

• Label-observation-relation: The CHMM may be used
for data where a label is related to a whole sequence of
observations as well as where a label is related to one
single observation. Here, it is more flexible than the
HMM which has limited options for the latter case. The
only option in the classical HMM is to statically assign
each hidden state to one of the labels.
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• Easy multimodal fusion: As the CHMM directly pro-
vides class probabilities, lateral fusion becomes much
easier. In the classical HMM, rations for each feature
decision have to be computed to determine the most
likely class. The models depend on the class and the
modality and cannot differ in complexity. Therefore,
no intuitive weighting of the classifiers is possible and
the uncertainty does not necessarily sum up to one.

Exploration of the CHMM for speech-based emotion
recognition was encouraged by previous work by Glodek et
al. [6, 7], who showed that CHMM based approaches can
outperform classical HMMs. While multimodal laughter de-
tection on audio-visual data from the FreeTalk data set only
resulted in about equal performance of both approaches [6],
the HMM is outperformed by the CHMM for action-detection
using a two-layered approach evaluated in [7]. The CHMM
reached a F1-score of 0.53 compared to a score of 0.32 for
classical HMMs, both applied to unseen, unsegmented data.

Consequently, we publish the JaCHMM – a Java imple-
mentation of the Conditioned Hidden Markov Model – pub-
licly available under the BSD license. In Section 2, a com-
plete formal description of the CHMM and all implemented
equations is presented. For clarity and readability reasons, it
not only contains previously unpublished equations but also
a summary of previously published equations by Glodek et
al. [6]. Section 3 lists the prominent features of the JaCHMM
and gives details on how to obtain the library. We present an
example application of the JaCHMM in the task of speech-
based emotion recognition along with a brief performance
analysis in Section 4 before concluding in Section 5.

2. CONDITIONED HMM

Conditioned Hidden Markov Models are an extension of clas-
sical HMM, originally published by Glodek et al. [6]. The
principle operation method of the CHMM in the time domain
is illustrated by a sequence diagram in Figure 1.

2.1. Model Description

Like the classical HMM, the CHMM also consists of a dis-
crete set of hidden states wi ∈ W and a vector space of ob-
servations X ⊆ Rn. A separate emission probability bi(x(t))
is linked to each state defining the likelihood of observation
x(t) ∈ X at time t while being in state wi. Further, aij,y =
p(w(t) = wj |w(t−1) = wi,y(t) = y) defines the transition
probability of transitioning from state wi to wj . In contrast
to the classical HMM, the transition probability distribution
also depends on the class label y ∈ Y . This results in the
transition matrix A ∈ R|W |×|W |×|Y |.

Furthermore, the meaning of the initial probability πi,y =
p(w(1) = wi|y(1) = y) for state wi is altered. It additionally
represents the label probability for label y at any time with
the corresponding matrix π ∈ R|W |×|y|.
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Fig. 1. General graphical representation of the CHMM model in the
discrete time domain. For each time step t, y(t) represents the most
likely label and w(t)

i the most likely hidden state given observation
x(t). bi represents the probability for the observation and πi,y the
label probability. aij,y defines the probability of transitioning from
state w(t)

i to state w(t+1)
j .

According to Glodek et al. [6], the likelihood of an obser-
vation sequence x(n) with corresponding label sequence y(n)

is given by

p(x(n),w(n)|y(n), λ)

=
∑
w∈W

p(w(1) = w|y(1),π)

·
T∏
t=2

p(w(t) = wj |w(t−1) = wi,y
(t),A)

·
T∏
t=1

p(x(t)|w(t) = wj , θ), (1)

where w(n) denotes the sequence of the hidden states.
The emission probability bj(x(t)) = p(x(t)|w(t) = wj , θ)

may be either modeled with discrete probabilities, or with
continuous probabilities using a one- or multidimensional
Gaussian Mixture Model (GMM) with the parameter set
θ = {{φj,k}Kk , {µj,k}Kk , {Σj,k}Kk }. The parameter set λ
describing the complete CHMM is defined as λ = {π,A, θ}.

2.2. Learning

The learning phase consists of two parts: initialization and
training.

For initialization, we adapted the k-means algorithm [8]
for the use with CHMMs. Here, the number of clusters k
corresponds to the number of hidden states. After clustering
initial observation sequences with their corresponding label
sequences, the transition probabilities are updated according
to the transitions between the clusters, given the labels. The
initial probabilities are updated according to the cluster and
the corresponding label that each element belongs to.

Training may be either performed also by applying k-
means or by using the Baum-Welch algorithm. The perfor-

3214



mance of the latter is heavily dependent on the initialization.
When comparing the HMM explained by Rabiner et al. [2] to
the CHMM, several changes1 must be applied to the Baum-
Welch algorithm.

The αs and βs of the Forward-Backward algorithm in ac-
cordance with Glodek et al. [6] are

αt,y(j) = bj(x
(t)) ·

∑
i∈W

aij,y · αt−1,y(i) (2a)

α1,y(j) = bj(x
(1)) · πj,y (2b)

βt,y(i) =
∑
j∈W

aij,y · bj(x(t+1)) · βt+1,y(j) (3a)

β0,y(i) =
∑
j∈W

πj,y · bj(x(1)) · β1,y(j), βT,y(i) = 1 (3b)

Computation of the state beliefs γt,y(j) and the transition
beliefs ξt−1,t,y(i, j) is then performed by using

γt,y(j) =
αt,y(j) · βt,y(j)

p(X)
, (4)

ξt−1,t,y(i, j) =
αt−1,y(i) · bj(x(t)) · aij,y · βt,y(j)

p(X)
, (5)

where
∑T−1
t=1 γt,y(i) is the expected number of transitions

starting from wi given y and
∑T−1
t=1 ξt−1,t,y(i, j) is the ex-

pected number of transitions from wi to wj given y.
Parameter learning is performed after evaluation of N se-

quences, updating the initial probabilities using the following
formula

πi,y =
expected number of times being in wi at t = 1 given y

expected number of times being in all w at t = 1 given y

=

∑N
l=1 δy(1)(l)=yγ1,y(n)(l)(i)∑N

l=1

∑
j∈w1

δy(1)(l)=yγ1,y(n)(l)(j)
(6)

where
∑n
i=1 πi,y = 1 and δ is the Kronecker delta.

The update for the transition probabilities after evaluating
N sequences is

aij,y =
expected number of transitions from wi to wj given y

expected number of transitions from wi given y

=

∑N
l=1

∑T−1
t=0 ξt−1,t,y(n)(l)(i, j)δy(t)(l)=y∑N

l=1

∑T−1
t=0 γt,y(n)(l)(j)δy(t)(l)=y

(7)

where

∀y∈Y
n∑
j=1

aij,y = 1.

The emission probabilities can be computed in accor-
dance with the methods presented by Rabiner et al. [2]. As
the state beliefs depend on y, a sum over all labels has to be
applied in order to create label independent emission proba-
bilities.

1Changes in Eq.: 19, 20, 24, 25, 27, 37, 40a, 40b, and 40c from [2]

2.3. Evaluation

For evaluation, the Viterbi algorithm is applied generating the
most likely label sequence. The label probability p(y|x(n))
for label y and observation sequence x(n) is calculated by

p(y|x(n)) =
p(x(n), y)∑
y p(x

(n), y)
, (8)

where p(x(n), y) = p(x(n)|y)p(y), p(y) is the prior probabil-
ity over all labels and

p(x(n)|y) =
∑
i∈w(T )

αT,y(i) (9)

the probability for observation sequence w(T ) given y.

3. JACHMM

Based on the Jahmm library – a HMM library based on Java
by Francois [9] – the JaCHMM library has been created im-
plementing the Conditioned Hidden Markov Model. Here,
some important features are outlined.

Labels JaCHMM may be used for data where a label is re-
lated to a whole sequence of observations as well as
where a label is related to one single observation.

Observations Observations may either be discrete or contin-
uous. Therefore, different types of observation prob-
ability distributions have been implemented, i.e., dis-
crete probabilities and Gaussian mixture models for
continuous observations.

Initialization and Training Initialization is implemented
using the k-means algorithm, which can also be used
for training. Additionally, training can be performed
by using the traditional Baum-Welch algorithm.

Computational Efficiency In order to increase the compu-
tational efficiency of JaCHMM, reasonable indepen-
dence assumptions regarding the transition probability
aij,y = p(w(t) = wj |w(t−1) = wi,y(t) = y) have been
introduced, resulting in the simplified version aij,y =
p(w(t) = wj |w(t−1) = wi) · p(w(t) = wj |y(t) = y).
Within the JaCHMM library, both variants are imple-
mented.

Algorithms For their application in the Conditioned Hid-
den Markov Model, prominent algorithms known
from HMMs were adapted, e.g., the Viterbi, Forward-
Backward, Baum-Welch, or K-Means algorithm.

Both an application programming interface (API) and a
command-line interface is provided by the JaCHMM library
to ensure its flexible application. The library is organized by
several packages encapsulating the core components (model

3215



Table 1. Results of anger recognition of CHMM, HMM, and SVM.
window step UAR

HMM 40ms 20ms 0.66
CHMM 40ms 20ms 0.67
SVM whole file 0.59

structure and basic algorithms), the probability distributions
of the observations, the learning algorithms, input and output
methods, and the command-line interface. Further, a tool-
box for creating observations and for evaluation of sequences
given a model exists. This packet structure allows for easy
integration into software projects of the whole library as well
as solely using parts of it. The command-line interface offers
commands for creating, initializing, learning, and evaluating
CHMMs enabling the library to work as stand-alone software.

Like the JaHMM, the JaCHMM is designed to achieve
reasonable performance without making the code unreadable.
Consequently, it offers a good way of applying the Condi-
tioned Hidden Markov Model in various tasks, e.g., for scien-
tific or teaching purposes.

The JaCHMM library is available online under the BSD
license at http://nt.uni-ulm.de/ds-jachmm.

4. APPLICATION

For a proof-of-concept application of the JaCHMM library,
we chose the task of speech-based emotion recognition based
on the LEGO corpus [10] distinguishing between the classes
“angry”, “neutral” and “garbage”. The LEGO corpus con-
tains annotated audio files of calls to the Lets Go bus infor-
mation system (cf. Raux et al. [11]). For this evaluation, fea-
tures have been derived from 4832 audio files with an average
length of 1.65s (±1.46s) using a windowing approach result-
ing in a total of 25 acoustic features per window with a win-
dow length of 40ms and a step width of 20ms (20ms over-
lap). Features were, among others, Mel-Frequency-Cepstral-
Coefficients (MFCCs), power, intensity, pitch, jitter, shimmer,
and formants. For measuring the recognition performance,
the Unweighted Average Recall (UAR) is used which is the
arithmetic average of all class-wise recalls.

Initialization and training of the CHMM was performed
using k-Means as it has been shown to be more robust in case
of limited data. The tests were performed using 6-fold cross-
validation in order to guarantee for generalizable results. To
determine the optimal performance with respect to the num-
ber of hidden states, window width, and step width, simple
linear exploration of the search space was applied. Results
can be seen in Table 1.

For comparison, the same experiment was conducted with
classical HMMs using Jahmm. One separate HMM was cre-
ated for each class. The results for UAR show that the CHMM
outperforms the baseline of HMM classification as well as a
previous approach for emotion recognition of simple SVM
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Fig. 2. Average time needed for training and evaluation of the
CHMM and HMM per observation sequence. For the HMM, the to-
tal number of hidden states and the time for training and evaluating
summed up over all HMMs is used.

classification performed in accordance with Schmitt et al. [4].
Figure 2 shows the average time needed for training and

evaluating the CHMM and HMM per observation sequence
in ms with respect to the number of hidden states. While
training of the HMM was much faster for all configurations,
for a small number of hidden states, evaluation of the CHMM
was faster than evaluating three HMMs. Note that for HMM
performance, the total number of hidden states as well as the
training and evaluation time was summed up over all HMMs.

5. CONCLUSION

In this work, we present the JaCHMM library publicly avail-
able under the BSD license, implementing a Conditioned
Hidden Markov Model. The CHMM offers an easy means
for classification tasks regarding sequential information for
multi-class recognition tasks. The library was successfully
applied to speech-based emotion recognition outperforming
approaches using Support Vector Machines as well as Hid-
den Markov Models. Both, the successful application of the
JaCHMM library and work by Glodek et al. show the high
potential of the CHMM. While the application showed that,
for a high number of hidden states, the CHMM needs more
time for training and evaluation than classical HMMs do,
the total time needed for applying CHMMs with a sufficient
number of hidden states to achieve good performance may
still be regarded as good.

6. ACKNOWLEDGMENTS

This work was supported by the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” which is funded by the German
Research Foundation (DFG).

3216



7. REFERENCES

[1] Vladimir N. Vapnik, The nature of statistical learning
theory, Springer-Verlag New York, Inc., New York, NY,
USA, 1995.

[2] Lawrence R. Rabiner, A tutorial on hidden Markov
models and selected applications in speech recognition,
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1989.

[3] Alexander Schmitt, Tobias Heinroth, and Jackson Lis-
combe, “On nomatchs, noinputs and bargeins: Do non-
acoustic features support anger detection?,” in Proceed-
ings of the 10th Annual SIGDIAL Meeting on Discourse
and Dialogue, SigDial Conference 2009, London (UK),
Sept. 2009, Association for Computational Linguistics.

[4] Alexander Schmitt, Roberto Pieraccini, and Tim
Polzehl, Advances in Speech Recognition: Mobile Envi-
ronments, Call Centers and Clinics, chapter ’For Heav-
ens sake, gimme a live person!’ Designing Emotion-
Detection Customer Care Voice Applications in Auto-
mated Call Cent, Springer, Sept. 2010.

[5] Björn Schuller, G. Rigoll, and M. Lang, “Hidden
markov model-based speech emotion recognition,” in
Acoustics, Speech, and Signal Processing, 2003. Pro-
ceedings.(ICASSP’03). 2003 IEEE International Con-
ference on. IEEE, 2003, vol. 2, pp. II–1.

[6] Michael Glodek, Stefan Scherer, and Friedhelm
Schwenker, “Conditioned hidden markov model fu-
sion for multimodal classification,” in Proceedings
of the 12th Annual Conference of the International
Speech Communication Association (INTERSPEECH
2011). Aug. 2011, pp. 2269–2272, International Speech
Communication Association.

[7] Michael Glodek, L. Bigalke, G. Palm, and Friedhelm
Schwenker, “Recognizing human activities using a lay-
ered hmm architecture,” in Workshop New Challenges
in Neural Computation 2011, 2011, pp. 38–41.

[8] Vance Faber, “Clustering and the continuous k-means
algorithm,” Los Alamos Science, , no. 22, pp. 138–144,
1994.

[9] Jean-Marc Francois, “Jahmm - An implementation of
HMM in Java,” 2006.

[10] Alexander Schmitt, Stefan Ultes, and Wolfgang Minker,
“A parameterized and annotated corpus of the cmu let’s
go bus information system,” in International Confer-
ence on Language Resources and Evaluation (LREC),
2012.

[11] Antoine Raux, Dan Bohus, Brian Langner, Alan W.
Black, and Maxine Eskenazi, “Doing research on a de-
ployed spoken dialogue system: One year of lets go! ex-
perience,” in Proc. of the International Conference on
Speech and Language Processing (ICSLP), Sept. 2006.

3217


