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ABSTRACT

We describe a method for incorporating map information to

the Kalman filter that is commonly used in indoor and out-

door navigation systems. The map information is provided

as a measurement to the Kalman filter to ensure the consis-

tency of the Kalman estimate. The proposed method provides

huge computational saving over common map matching algo-

rithms that use the more computationally expensive particle

filter. We show indoor navigation examples that highlight the

efficiency of the proposed algorithm.

Index Terms— Kalman filter, estimation, GPS, naviga-

tion, constraints, map matching, WLAN, positioning.

1. INTRODUCTION

Navigation systems have recently witnessed significant progress

with the widespread deployment of GPS positioning systems

in civil and military applications [1]. The performance of

outdoor positioning and navigation can even be enhanced by

the incorporation of other satellite positioning systems, e.g.,

GLONASS and GALILEO. More recently, indoor position-

ing systems [2, 3] have also witnessed significant progress

because of the wide range of applications, e.g., in location-

based services and e-medicine. Indoor positioning systems

typically use the wireless local-area network (WLAN) in-

frastructure because of the ubiquitous deployment of WLAN

in business and commercial facilities. Positioning error in

the order of few meters [4] is achievable for both indoor and

outdoor positioning systems when sufficient resources are

available.

A typical positioning/navigation system is illustrated in

Fig. 1. It comprises an infrastructure (e.g., a satellite sys-

tem in case of GPS, or access points in case of WLAN-based

positioning) that provides reference signals, and a measure-

ment engine (ME) that captures and processes the reference

signals to provide ranging information to the positioning en-

gine (PE). The positioning engine combines ranging informa-

tion and sensor measurements to estimate the user position.

The incorporation of sensors is enabled by the advances in

MEMS technology and the availability of different sensors

in many consumer electronics such as smart phones. Typi-

cal sensors that are used in positioning/navigation systems in-

clude accelerometer, magnetometer, and gyroscope. The PE

typically incorporates constraints to guarantee consistent po-

sitioning estimate and/or smooth navigation trajectory. The

constraints could be derived from the natural system limita-

tions, e.g., maximum possible speed for pedestrian/vehicle, or

from a priori position information, e.g., from a map or coarse

positioning signals like radio broadcast.

Fig. 1. A typical positioning/navigation system.

Typically, a Kalman filter [5] is used for the PE to com-

bine the ranging information with sensor measurements. The

states of the Kalman filter represent the position coordinate

(with appropriate coordinate system), and the velocity com-

ponents. In some cases, e.g., in GPS systems the extended

Kalman filter is used to account for the nonlinear relation be-

tween the position and the ranging information. The incor-

poration of map information in positioning systems can be

set as a postprocessing step where the estimate is refined to

match the map constraints [6]. Recently, particle filters [7]

have been used for map matching. Particle filters offer in gen-

eral better performance than Kalman filtering but at the cost

of a much higher complexity, which could be prohibitive in

power-limited applications.

The incorporation of map constraints in the Kalman filter

framework is more attractive in practical applications because

of its reasonable complexity and because it is commonly used

in most navigation applications for blending ranging and sen-

sor measurements. It has been considered in some earlier

work, e.g., [8]-[11] (the reader is referred to [12] for a com-

prehensive survey). In [8] the map matching measurements

are considered only in route turns when the GPS signal is not

available. The common factor between other related works

[9]-[11] is to abstract the map to few segments and use a mul-
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tiple hypothesis test to choose the most likely segment after

the Kalman filtering. The general problem with this approach

is the inconsistency in the computation of the covariance ma-

trix of the Kalman estimate which impacts the processing of

future observations.

In this work, we propose a new procedure that integrates

the constraints posed by the map into the Kalman filter it-

self. These constraints are provided as measurements to

the Kalman filter engine such that we have both consistent

Kalman operation and satisfied map constraints. These map

measurements are provided to the Kalman filter only if the

Kalman estimate violates the map constraints. By properly

choosing the measurement covariance, the Kalman estimate

is refined to satisfy the map constraints and the correspond-

ing covariance matrix is updated accordingly. The proposed

procedure is shown to provide significant improvement over

unconstrained Kalman filter at a marginal complexity cost.

2. KALMAN MODELING

The basic dynamic model of the Kalman filter has the form

xt = Φtxt−1 +wt (1)

zt = Htxt + vt (2)

where xt is the state vector and zt is the measurement vec-

tor. wt ∼ N (0,Qt), and vt ∼ N (0,Rt), denote respec-

tively the process and measurement noise at time t (where

N (m,A) denotes a normal distribution with mean m and

covariance A). Φt is the state transition matrix and Ht is the

measurement matrix at time t. The operation of the Kalman

filter follows a standard form of equations [5] (which we do

not include here because of the space limitation) that com-

bine the old estimate from the model and the innovation from

the new measurements. The amount of contribution of the

new measurement to the Kalman filter is controlled by the co-

variance matrix Rt of the measurement. The Kalman filter is

the minimum mean square estimator (MMSE) for the above

problem, and it is the linear minimum mean square estima-

tor (LMMSE) if the noise distributions are not normal [14].

In many cases, the measurements are not a linear function of

the corresponding states, e.g., when the Time-of-Flight (TOF)

is used for ranging information. The suboptimal extended

Kalman filter is usually used to linearize the measurements

around the old state estimate.

In positioning applications, the states of the Kalman fil-

ter always include the (x, y, z) position of the receiver and

sometimes include the corresponding velocity and accelera-

tion. The measurements contain the ranging information that

depend on the system infrastructure. For example, the rang-

ing information could be computed from the TOF to refer-

ences with known position (e.g., satellites in GPS system)

[1], by measuring the Angle-of-Arrival (AOA) to geometri-

cally distributed references (e.g., in Radar applications)[13],

or by measuring the strength of the received signal for known

references as in indoor Wi-Fi positioning applications [3]. In

all the above cases, the position estimation could be improved

if a map is available to the user to refine the estimate accord-

ing to the map information. In the following, we present a

novel method for incorporating the map information into the

Kalman Filter in a stable and computationally efficient way.

3. DIGITAL MAP ABSTRACTION FOR

NAVIGATION

Digital maps, both indoor and outdoor, provide important in-

formation that could aid the positioning and navigation sys-

tem. For positioning and navigation purposes, digital maps

provide constraints on the position estimate, and in the ab-

sence of reference signals, e.g., in dead-reckoning scenarios,

it could be combined with sensor information to compensate

for the poor geometry. Consistency between the Kalman fil-

ter estimate (and the corresponding covariance matrix) and

the map constraints is necessary for robust navigation.

In our model, the digital map is used to determine a fea-

sible set of solutions for the Kalman estimate that is valid in

most navigation scenarios. For example, in vehicular naviga-

tion buildings, shops, and parks are not in the feasible estima-

tion set. For indoor navigation, if the sensors are indicating a

moving user, then office spaces and labs are not in the feasi-

ble estimation set. Therefore, the first step for incorporating

digital map information into Kalman-based navigation sys-

tems is to segment the map into two disjoint sets of feasible

and infeasible areas. Because of the nature of the infeasible

set in real maps, it is characterized by a set of non-connected

areas. An example of this segmentation for a section of an

indoor floor plan map is shown in Fig. 2. Each of the infea-

Fig. 2. Example of indoor map segmentation.

sible areas can be approximated by a polygon. Without loss

of generality, these polygons can be assumed to be convex. A

non-convex polygon can be approximated by more than one

convex polygon. Note that, this segmentation is done offline
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and each infeasible region is characterized the edge points of

its perimeter, and the line equation for each edge.

For indoor navigation this map modeling can be done at

the building level, i.e., using only exterior walls, if the indoor

floorplan map is not available. This takes care of the error at

the building boundary which is usually large due to the poor

geometry of the access points [4].

4. MAP MATCHING

The map information is needed only if the Kalman estimate is

in the infeasible region of the map. If the estimated position

from the Kalman filter is in the feasible region, there is no

need to do anything for map matching. If the estimated posi-

tion is in the infeasible set, it needs to be projected onto the

feasible set. This projection is set as an extra measurement to

the Kalman filter. In the following discussion let Pi denote

the i-th polygon of the infeasible regions, and B denote the

set of infeasible points where

B =
⋃

i

P i (3)

where P i denotes the interior of Pi. The incorporation of map

information into the Kalman filtering is done by the following

steps:

1. Assume we have a map that contains the infeasible re-

gions in the form of polygons. Each polygon is spec-

ified by its corners and its edges in the form of the

line equation. The equation of the i-th edge of the k-

th polygon (whose boundaries are y
(i,k)
1 and y

(i,k)
2 ) is

expressed as

y = m
(k)
i x+ c

(k)
i (4)

and y ∈ [y
(i,k)
1 , y

(i,k)
2 ].

2. Assume that (xt, yt) is the position estimated at time t
by the Kalman filter (based on the measurements, e.g.,

TOF, AOA, RSSI, .. etc).

3. If (xt, yt) /∈ B, then output (xt, yt) as the final position

and goto step 2 for the next time step.

4. If (xt, yt) ∈ B, identify the polygon Pk ∈ B such that

(xt, yt) ∈ P k.

5. Measure the distance between (xt, yt) and all the edges

of Pk by projecting (xt, yt) onto all the polygon edges

and pick the closest edge. Let the corresponding line

equation be y = m
(k)
j x+ c

(k)
j .

6. Input the line equation to the Kalman filter as a mea-

surement. The measurement value is the constant c
(k)
j ,

and the corresponding measurement matrix (Ht in (2))

has all zeros except the entries that are multiplied by x

and y in the state vector. The corresponding values in

Ht are set to −m
(k)
j and +1 respectively. Set the cor-

responding measurement covariance matrix to a very

small value (compared to the covariance matrix of the

Kalman estimate) to enforce the constraint.

7. Run the Kalman filter with the map measurement to ob-

tain the refined estimation (x+
t , y

+
t ) after the map cor-

rection and output this estimation as the refined final

position and move to the next time step.

Note that, the injection of the map measurement in step 6,

with the appropriate scaling of the measurement covariance

ensures the consistency of the Kalman processing while en-

forcing the map constraint. The updated covariance matrix of

the Kalman estimate (x+
t , y

+
t ) at step 7, combines the confi-

dence of the earlier measurement (xt, yt) and the map con-

straint.

Most of the complexity of the map matching algorithm is

in steps 3 and 4, where we need to know whether or not the

Kalman estimate is infeasible. For each Pi ∈ B, we need to

check whether (xt, yt) ∈ P i. This can be done by using the

ray casting algorithm [15]. The number of intersections with

the polygon edges of a ray originating from the test point is

counted. If the number of intersections is odd, then the point

is inside, otherwise it is outside. To simplify computation, we

choose a ray parallel to the y-axis which reduces the problem

to direct substitution. The number of polygons that need to be

checked could be significantly reduced by storing a lookup ta-

ble with the centers of all the polygons, and run the ray casting

algorithm only on the polygons that correspond to the closest

centers to (xt, yt). Further, this list could by dynamically up-

dated with new estimates such that the distance calculation

to the centers is limited to the closest centers to the older es-

timate (xt−1, yt−1). If we have a total of M polygons with

an average of N edges, then the overall complexity of the ray

casting algorithm is O(NM). This could be reduced to O(N)
by searching only over the local polygons in each step. The

processing at each edge requires a single multiplication (in the

line equation) and two comparisons with the edge boundaries.

5. EXAMPLES

The proposed map matching algorithm was integrated with

the indoor algorithm positioning in [16] that uses RSSI mea-

surement from the Wi-Fi access points for positioning esti-

mate. In Fig. 3, we show two examples of the positioning

performance with and without map matching. In the exam-

ples, the positioning is done using only the RSSI measure-

ments (no sensors). The large swings in the raw Kalman es-

timation correspond to poor access point geometry which is

more prominent at the border of the building. The proposed

map matching algorithm provides significant improvement in

the overall positioning estimation especially at segments of

poor geometry. Further, it provides fine tuning of the estimate
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to improve the error margin in good geometry regions. The

map matching procedure is most effective when the feasible

set is much smaller than infeasible sets (which is often true

in practice). On the down side, the map matching procedure

exhibits under poor geometry a relatively long latency (up to

few seconds) in updating the positioning estimate, which in

general could be mitigated by incorporating sensor (e.g., ac-

celerometer) measurements.

Fig. 3. Examples of incorporating the proposed algorithm in

indoor navigation in office space.

6. CONCLUSION

We proposed a new algorithm for incorporating the map in-

formation in navigation systems. The map information is pro-

vided as correction measurements to the Kalman filter if the

estimate does not satisfy the map constraints. This setup pre-

serves the consistency the Kalman estimation and the corre-

sponding covariance matrix. The proposed procedure offers

more than an order of magnitude reduction in the complexity

over the common particle filtering procedures which require

the evaluation of thousands of particles over feasible map re-

gion.

Because of the proposed arrangement for map matching,

it could be fine tuned to take advantage of the ecosystem of the

positioning infrastructure without impacting the estimation

consistency. For example, it could be turned off under good

geometry or when the map is not available. The search space

to determine the feasibility of the position estimate could be

dynamically pruned based on the estimation history. Further,

the procedure could also be extended to accommodate more

than one Kalman filter by examining the closest N polygons

of the infeasible set (rather than the closest one), and run mul-

tiple copies of the Kalman filter and choose the one with the

smallest covariance matrix norm. This is a coarse approxi-

mation of particle filtering that provides a trade-off between

complexity and accuracy which could be tailored to the com-

putational resources of the underlying positioning system.
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