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ABSTRACT

This paper considers a problem of estimating multivariate au-
toregressive (AR) models with sparse coefficient matrices. A
joint zero pattern of AR coefficients reveals a Granger causal-
ity structure of the variables, which is typically depicted as a
graphical model. The problem of estimating the graph topol-
ogy is then formulated as a least-squares problem with an `1-
type regularization to promote a sparsity in the AR coeffi-
cients. We obtain a convex framework of the estimation prob-
lem which can become challenging to solve in a large scale
setting due to the nondifferentiability of the cost function. We
apply a recent powerful algorithm, namely, the alternating di-
rection method of multipliers (ADMM) for solving topology
selection problems in Granger graphical models of AR pro-
cesses. We illustrate the idea and verify the performance of
the ADMM algorithm on randomly generated data sets. This
approach is finally applied on Google Flu Trends data learn a
causal structure of flu activities in the 51 states of the USA.

Index Terms— Sparse autoregressive models, Granger
causality, Topology selection.

1. INTRODUCTION

Recent studies have been focused on exploring relationship or
causal structures in multivariate time series. Such relationship
can be represented as a graphical model where the directional
edges specify the Granger causality structure of variables [1],
which states that time series yi is Granger-caused by time se-
ries yj if knowing the past values of yj helps improve the
prediction of yi. There is a nice characterization of Granger
causality for autoregressive processes which is widely used
to model multivariate time series in many applications. An
n-dimensional autoregressive process of order p is given by

y(t) = A1y(t−1)+A2y(t−2)+· · ·+Apy(t−p)+u(t) (1)
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where y(·) ∈ Rn, Ak ∈ Rn×n, k = 1, 2, . . . , p and u(·) is
input noise. The absence of a directed edge from note j to i
illustrates that yi is not Granger-caused by yj and this can be
characterized in terms of AR coefficients as [1]

(Ak)ij = 0, k = 1, 2, . . . , p (2)

(where (Ak)ij denotes the (i, j) entry of Ak.) The concept
of Granger causality has been extensively used for learning
graphical models for various systems, for example, gene net-
work, electroencephalogram (EEG), or fMRI (function mag-
netic resonance imaging); see [2, 3, 4, 5, 6] and many ref-
erences therein. A common goal of these works is to fit an
autoregressive model to a time series of interest and evaluate
the zero entries in the estimated AR coefficients which finally
reveal the interaction structure of the variables.

This paper discusses about an estimation problem in
learning topology of Granger graphical models. Section 2
shows a problem formulation that promotes a joint sparsity in
Ak’s. The problem is a least-squares estimation with an `1-
type regularization which can also be found in [4, 5, 7]. The
problem falls into a convex framework which can be solved
efficiently by many existing solvers. However, the nondiffer-
entiability of the objective function makes it challenging to
solve in large scale. Section 3 presents the contribution of this
paper. We apply the alternating direction method of multipli-
ers (ADMM) to solve the estimation problem. The algorithm
has been successfully shown to be efficient and suitable for
solving many large-scale statistical learning problems [8].
We confirm this result in section 4 where the performance
of ADMM is shown in practice. We also provide numerical
examples by synthetic and real data sets to demonstrate the
approach presented in this paper.

2. PROBLEM FORMULATION

The least-squares (LS) method is a common approach used
for fitting an AR model (1) to the measurements y(1), . . . , y(N).
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The model parametersAk’s are chosen such that the quadratic
loss

∑N
t=p+1 ‖y(t) −

∑p
k=1Aky(t − k)‖22 is minimized. If

we define A =
[
A1 · · · Ap

]
∈ Rn×np then the quadratic

loss can be rewritten more compactly as ‖Y − AH‖22 where
the matrices Y and H contain the past measurements of y(t).

If a Granger causality structure is given, formulating the
problem of estimating AR model subject to the zero pattern
of Ak’s as in (2) is straightforward. However, in most appli-
cations, the goal is to learn a causal inference from the data,
so the graph topology is commonly unknown. The topology
can be induced from a zero pattern of matrices Ak’s. There-
fore, the idea is to propose a formulation that favors a group
sparsity in Ak’s. This can be done by introducing a sum of
`2-norm term in the cost objective as follows.

min 1
2‖Y −AH‖

2
2 + λ

∑
i6=j

‖[(A1)ij (A2)ij · · · (Ap)ij ]‖2
(3)

with variables Ak ∈ Rn×n for k = 1, 2, . . . , p. The scalar
λ > 0 is called the regularization parameter. The summa-
tion over (i, j) with i 6= j plays a role of `1-type norm,
which causes some (i, j) entries of Ak to zero for a suffi-
ciently large λ. Furthermore, using the `2 norm of p-tuple of
(Ak)ij will force all pmatricesAk’s to have the same sparsity
pattern. This is known as a Group Lasso problem introduced
in [9]. The sum of `2 norms is also called composite absolute
penalties [10] or a sum-of-norms regularization. The formu-
lation (3) is also considered in [4, 5, 7]. In these studies, they
have shown the advantage of using Group Lasso formulation
over the standard Lasso (the matrices Ak’s may have differ-
ent sparsity patterns). A nice property of (3) is that it is casted
in the framework of convex optimization. We will show the
benefits of solving it using the alternating direction method of
multipliers (ADMM) in section 3.

3. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The problem (3) can be expressed in a general form as

minimize f(x) := h(x) + g(x)

where x is the variable (representing AR coefficients), h
refers to the quadratic loss, and g refers to the sum-of-norms
regularization term added to promote sparsity in x. Due to
nondifferentiability in g, we explore several fast gradient-
based methods [11, 12] that have been shown to be efficient
for related nonsmooth problems such as Lasso or sparse
covariance selection problems. At iteration k, the error in
the cost objective decreases as fast as 1/k2 which is a sig-
nificant improvement from existing gradient or subgradient
methods applied on nonsmooth problems. Recently, the al-
ternating direction method of multipliers (ADMM) has been
proposed to similar `1 minimization problems. The method

is a combination of the dual decomposition and augmented
Lagrangian methods; see the detail in [8]. The method also
offers a performance that is comparable to recent competitive
algorithms. As an example, the performance of ADMM,
fast iterative shrinkage-thresholding algorithm (FISTA) [12],
and other methods applied on the related `1-regularized LS
problem were discussed in [13, 14], where it was shown that
ADMM and FISTA are efficient to estimate sparse models
in several settings. Compared to the problem in [13], ours is
more involved since the variables are matrices and to apply
the ADMM, we need to arrange (3) in the ADMM format as

min 1
2‖Y −AH‖

2
2 + λ

∑
i 6=j

‖[(Z1)ij · · · (Zp)ij ]‖2

s.t. A− Z = 0.
(4)

We define an auxillary variable Z =
[
Z1 Z2 · · · Zp

]
and Zk ∈ Rn×n, k = 1, . . . , p. The ADMM algorithm for
the problem (4) is as follows.

ADMM for sparse AR estimation. Initialize A(0), Z(0) and
U (0) and set an ADMM parameter ρ > 0. For k = 0, 1, . . .,
repeat the following steps

A(k+1) = argmin
A

1

2
‖Y −AH‖22 +

ρ

2
‖A− Z(k) + U (k)‖2F

Z(k+1) = argmin
Z

{
(ρ/2)‖A(k+1) + U (k) − Z‖2F

+λ
∑
i 6=j

∥∥∥[(Z1)ij (Z2)ij · · · (Zp)ij

]∥∥∥
2


U (k+1) = U (k) +A(k+1) − Z(k+1)

until a termination criterion is satisfied.

The A-update step can be analytically calculated by

A(k+1) =
[
ρ(Z(k) − U (k)) + Y HT

]
(HHT + ρI)−1.

Since ρ > 0, the A-update takes the form of a ridge regres-
sion. We perform the Cholesky factorization of (HHT + ρI)
once and use the factor in the next A-update.

For each (i, j), the Z-update step takes the form

min
z

(1/2)‖z − a‖22 + ν‖z‖2, ν > 0

where z, a ∈ Rp. The solution of this problem is unique and

given by z = 0 if ‖a‖2 ≤ ν and z =
a

‖a‖2
· (‖a‖2 − ν)

otherwise. This expression is widely known as a soft thresh-
olding applied on ‖a‖2 which can be cheaply computed in an
elementwise manner for the Z-update.

In the context of ADMM, A(k) and Z(k) are called the
primal and dual variables, respectively. The updates are ter-
minated when the primal and dual residuals are small.
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4. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the
ADMM method for solving the topology selection on ran-
dom sparse AR processes and on Google flu data set.

4.1. Convergence of ADMM in practice
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Fig. 1. Comparison of convergence in the relative error of the
objective between ADMM and FISTA methods.

The ADMM algorithm is computationally cheap in each
step so it is suitable for large-scale problems. In this experi-
ment, we compare the ADMM method with the fast iterative
shrinkage-thresholding algorithm (FISTA) [12]. The latter is
another recent fast gradient-based method that is applicable
to nonsmooth problems [14]. We use n = 100, p = 3 which
gives 30, 000 variables in total. The density of nonzero entries
inAk’s is set to 0.01 (high sparsity setting). We solve (3) with
regularization parameter λ = 0.1λmax where λmax is the crit-
ical value such that using any λ ≥ λmax yields the solution
Ak’s of (3) as diagonal matrices (sparsest solution). The cal-
culation of λmax will be shown in section 4.3. We observed
that selecting ρ in ADMM in the range of 10λ to 50λ gives a
desirable performance. The algorithm FISTA is implemented
with a backtracking line search to find a step size. We plot
the relative errors |f

(k)−f?|
|f?| in Figure 1 where we compute f?

by solving (3) using SeDuMi solver in CVX [15]. We can see
that the number of iterations required to reach a desired accu-
racy for ADMM is much less than FISTA. Given that we have
30, 000 variables in total, it requires only a few hundred iter-
ations to converge and finishes the task within 15-30 seconds.

4.2. Model selection on synthetic data set

In this section, we investigated the effect of the regularization
parameter λ on the averaged error in the estimated topologies,
chosen from two approaches; cross validation and a model se-
lection criterion. The latter is the idea from [16] which incor-
porates a Bayes information criterion (BIC) score for ranking
a small set of candidate topologies obtained by solving (3).

We generate a sparse AR model with dimension n =
20, p = 3 and N = 1000. Solving (3) by using nine values of
λ in the range of (0.01λmax, λmax) results in nine estimated
topologies, ranging from densest to sparsest graphs. The cho-
sen λ corresponds to the model that minimizes the BIC score.
In this example, the best model according to BIC yields the
error of 2.89% in the estimated topology. We also tune the

(a) True topology

error = 2.89 %

(b) BIC

error = 8.42 %

(c) Cross validation

Fig. 2. Comparison of the true and estimated sparsity pat-
terns. The blue squares are the correctly identified nonzero
entries. The red circles are misclassified entries as nonzero.
The black crosses are misclassified entries as zeros.

regularization parameter λ by using K-fold cross validation;
see the method in [17, §7]. We choose 5 folds and 10 val-
ues of λ in the range (0.01λmax, λmax). From Figure 2, the
cross validation technique tends to favor a denser graph while
BIC prefers a sparse graph because the penalty term in BIC
score suggests that BIC tends to reject complex models. The
technique of tracing trade-off curves in [16] and using BIC
score is a less computational burden compared to the cross-
validation technique and also provides a smaller error in the
estimated topology. Therefore, this approach is recommended
when a simple model is favored.

4.3. Critical value of the regularization parameter

We can derive λmax such that for any λ ≥ λmax, the solution
A1, . . . , Ap of (3) are diagonal. The optimality (KKT) condi-
tion of (3) is obtained by setting the subgradient of the objec-

tive to zero. Define aij =
[
(A1)ij (A2)ij · · · (Ap)ij

]T
.

When A1, . . . , Ap are diagonal, i.e., aij = 0, a subgradient
of the cost objective f in (3) with respect to aij is

∂f
∂(A1)ij

...
∂f

∂(Ap)ij

 = −bij+λgij , where bij =


((Y −AH)HT

1 )ij
...

((Y −AH)HT
p )ij

 ,
Hk is the kth block row of H , and gij is a subgradient of
‖aij‖2 which is any vector in Rp such that ‖gij‖2 ≤ 1. The
KKT condition is expressed as

‖bij‖2 = λ‖gij‖2 ≤ λ, for i 6= j. (5)
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To derive λmax, we need to compute the diagonals of Ak’s
which can be obtained from the zero gradient condition of the
cost objective with respect to (Ak)ii: [(Y − AH)HT

k ]ii =
0, k = 1, . . . , p. Since Ak’s are diagonal, these equations are
(Y HT

1 )ii
...

(Y HT
p )ii

 =


(H1H

T
1 )ii (H2H

T
1 )ii · · · (HpH

T
1 )ii

...
...

(H1H
T
p )ii (H2H

T
p )ii · · · (HpH

T
p )ii



(A1)ii

...
(Ap)ii

 .

By solving for (Ak)ii and substituting them in (5), we define

λmax = max
i 6=j
‖bij‖2 (6)

and conclude that if λ ≥ λmax then the solution of (3) are
diagonal matrices (the sparsest solution.)

4.4. Real data set

Google Flu Trends is a project of analyzing Google search
queries related to influenza-like illness (ILI) and using these
information to estimate the number of actual flu activities oc-
curred across the world; see http://www.google.org/
flutrends/. The result of [18] shows that the estimated
number of patients with ILI based on queries such as ”flu” or
”influenza” are close to the traditional flu activities.

In this experiment1, we wish to investigate a causal struc-
ture of flu trends occurred in 51 states across the USA via
Google Flu Trends data collected during Dec 2007 - Apr 2012
in a weekly basis. Figure 3(a) shows time series examples of
Arkansas, Texas, Oklahoma and Louisiana. The y-axis rep-
resents the number of influenza-like illness (ILI) cases per
100,000 population (estimated by Google). Figure 3(b) shows
the estimated topology of sparse AR models using the model
selection approach with BIC score. It shows that Texas, Okla-
homa, Louisiana and Arkansas have significant influences on
many states. They are among the states that have higher num-
bers of ILI cases than the mean value and this result agrees
with the fact that they are geographically neighbors.

5. RELATION TO PRIOR WORK

Our formulation (3) is similar to the ones considered in [4, 5,
7]. The paper [7] focused on the behaviour and consistency
of the solution, while we focus on an efficient algorithm to
solve the estimation problem. In [4], the regularization term is
posed as a second-order cone (SOCP) constraint instead, and
they applied the active-set algorithm with the SOCP solver.
However, the problem dimension considered in this paper is
small (n = 7), while we are more concerned with an algo-
rithm that can handle larger problem dimensions. The pa-
per [5] applied the Group Lasso procedure from [9] in com-
bination with their methodology to learn a gene network sys-
tem. While their method is shown to be promising, we opt

1Thanks to Pancheewa Arayacheeppreecha for the experimental results.
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(b) Granger graphical model for Google flu data

Fig. 3. Learning a graphical model for Google flu data.

to alternatively solve the problem by a convex optimization
framework. The method in [5] requires tuning the parameter
λ to enforce different levels of sparsity. Our explicit formula
of the critical value of λ in (6) can be useful for selecting a
range of λ for tuning purpose as well. We applied the ADMM
method given in [8], which requires formulating (3) as the
form of (4) to obtain a computationally efficient algorithm.
The problem of estimating sparse AR model we considered
here can be served as another evidence for the advantage of
ADMM in the optimization or machine learning community.

6. CONCLUSION

We have presented a convex framework for learning a topol-
ogy in Granger graphical models, which is equivalent to es-
timating autoregressive models and promoting a joint spar-
sity in the AR coefficients simultaneously. The formulation
is a least-squares problem with an `1-type regularization. We
have investigated the ADMM algorithm which is very sim-
ple to implement and has a desirable rate of convergence in
practice. Experiment with randomly generated data sets and
time series of Google flu trends were included to confirm the
effectiveness of our approach.
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