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ABSTRACT

We present a Bayesian approach to unsupervised clustering
of activity within video imagery. Vehicles and pedestrians
are tracked within the video imagery and their collective ac-
tivity in each time frame is measured and categorized using
a natural extension of the dynamic latent Dirichlet allocation
model. Our extension involves use of multiple types of simul-
taneously observed features from multiple classes of objects
within the video imagery. Within the prior for the model these
features are treated as independent, and modeled as draws
from a variety of appropriate distribution types. By including
multiple features, the model generates a richer set of activi-
ties; we quantitatively show that this yields better predictions
of physical attributes within the scene, relative to currently
available models that use only the single best feature. We
show this by comparing model prediction of traffic light states
within a busy intersection, which we ground-truth manually
within the video imagery.

Index Terms— hierarchical models, Dirichlet process,
activity modeling, dynamic latent Dirichlet allocation

1. INTRODUCTION

Much research effort is currently focused on the discovery
and categorization of human activity within video data. The
large body of existing work suggests both the difficulties and
interest in the automated analysis of visual surveillance of ob-
jects and behavior (for a thorough survey see [1]). Of partic-
ular interest is the ability to automate the understanding of
activity within complex scenes. There are predominantly two
categories of approaches to this problem. The more tradi-
tional approach involves tracking objects through the scene
and assessing activity based on these tracks [2], [3], [4], [5],
[6]. Much previous research using a tracking approach relies
heavily on expert knowledge to label a fixed set of activities.
This supervised approach has limited robustness and is un-
able to expand beyond the fixed set of training actions. The

∗Author performed the work while at Duke University

other approach involves measuring motion within the video
images directly to asses activity [7], [8], [9], [10]. In par-
ticular [11, 12] propose unsupervised approaches employing
topic models operating on discrete spatio-temporal actions to
learn meaningful co-occurrences of actions.

With the advent of more sophisticated detection and track-
ing algorithms that incorporate a probabilistic motion, shape,
and color model for detection and tracking [13], it is pos-
sible to leverage measurements within the video images di-
rectly to create a more robust Bayesian tracking algorithm.
Moreover, combining these robust tracks with hierarchical
Bayesian models allows for a more sophisticated approach to
activity modeling. While previous approaches that use hier-
archical Bayesian models [11, 12] are powerful, they operate
entirely on a single feature, extracted from quantized optical
flow [14]. Further, they require the number of topics be set a
priori, and rely on Gibbs sampling for inference. We propose
a nonparametric model that can simultaneously consider mul-
tiple features, treats different classes of objects (e.g., pedestri-
ans vs. vehicles) in the scene independently (rather than using
a common feature set across all classes), automatically infers
the number of topics via a stick-breaking[15] representation
of the Dirichlet Process [16], and employs efficient variational
Bayesian (VB) inference [17]. Moreover, our proposed model
also incorporates temporal dependence via the dynamic struc-
ture presented in [18].

2. REVIEW OF DYNAMIC TOPIC MODELING

Topic models [19], [20], [21], [22] refer to a family of models
that attempt to learn meaningful co-occurrences of discrete
tokens (words) from a corpus of documents. Currently, the
most widely used topic model is Latent Dirichlet Allocation
(LDA) mainly due to it being a fully generative model of doc-
uments while [19], [20] are not. In LDA, each document is
characterized by a discrete distribution over a set of globally
shared topics, where each topic is a discrete distribution over
a fixed set of words. In LDA, observations are considered
exchangeable and the inferred topic distributions are shared
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across all documents. With observations that have a sequen-
tial time attribute, the dynamic nature of how topic mixtures
evolve over time can be exploited by removing this global
exchangeability assumption and constraining exchangeability
to a varying time window [23]. This results in a dynamic la-
tent Dirichlet allocation (dLDA) model [18] that generates a
time varying mixture of topics. Pruteanu-Malinici et al. [18]
considered a time-stamped sequence of documents, imposing
that the topic proportions within a document at time t are con-
structed dependent on the topic proportions within documents
of time t− 1.

If we consider a collection of documents with known
time stamps t = 1,. . . ,T, where the total number of indepen-
dent documents at any given time is Nt, we can describe
the full set of documents over time as {xt,i}T,Nt

t=1,i=1 where
xt,i represents a vector of word counts in document i at time
t. The dLDA generative model describes a process for a
time-evolving mixture of topics and is written as

xt,i ∼ F (ϕzt,i)

zt,i ∼ Multi(τ1t , ..., τ
K
t ), zt,i ∈ {1,K}

zt=1,i ∼ Multi(π1)

τ t = (1− wt)τ t−1 + (wt)πt

πt ∼ Dir(
α

K
, ...,

α

K
)

wt
i.i.d.∼ Beta(c0, d0)

ϕk
i.i.d.∼ H (1)

Here, each word is drawn from a distribution F (ϕ) parame-
terized by a topic ϕ, and the topic assignment zt,i for docu-
ment i at time t is drawn from a multinomial distribution. In
standard LDA, this multinomial is parameterized by a draw
π from a symmetric Dirichlet distribution, providing a con-
stant set of mixing weights. In dLDA, a time-evolving as-
pect is introduced by parameterizing the draw of zt,i by τt.
This parameter is a sum of the mixing weights in the previous
time step and current time step, proportioned by an innova-
tion weight wt. When wt is small, the mixing weights from
the previous time step have more influence in the model than
the newly drawn mixing weights. Whereas, when wt is large,
the new mixing weights have more influence and the model is
more likely to transition to a new set of topic mixtures. The
kth topic assigned to the jth word is drawn i.i.d. from a dis-
tribution Hj . By selecting the distributions F and H as con-
jugate pairs, efficient variational inference is possible. Obser-
vations in the form of words are well modeled as a draw from
a multinomial distribution, F (ϕjzt,i) = Multi(ϕjzt,i), and
conjugacy dictates that the topics are drawn from a Dirich-
let distribution, Hj = Dir(βJ , ...,

β
J ). To ensure that a suf-

ficient number of topics are available within the model, the
total number of possible topics K is set large enough that not
all will have an observation associated with them. Any un-
populated clusters are pruned away after parameter inference.

3. FEATURES OBSERVED

The type of distribution used to model observables and topics
within the dynamic topic modeling framework is flexible, and
should consist of whatever is most appropriate for the obser-
vation itself. When considering a dynamic topic model frame-
work applied to systems that do not involve text, such as video
data of a busy intersection of roads, a more sophisticated no-
tion of observation needs to be considered. For instance, ob-
servations could consist of multiple simultaneous measures,
such as the distribution of vehicle speeds and headings, as
well as the spatial density of vehicles within an intersection.
In such a setting, instead of modeling topics in the traditional
sense, we model topics of activity.

Along with multiple features, we also incorporate mul-
tiple categories of observed objects. For instance, by using
existing tracking software [13] that creates tracks for vehi-
cles in the scene, and a different track set for pedestrians
in the scene, we have two categories of tracked objects to
consider. Each of these object categories has its own set of
features. Vehicle tracks contain a rich set of information to
consider. In particular, the features we measure from the
collection of vehicle tracks in the scene are vehicle spatial
density, heading change, acceleration, heading of deceler-
ating vehicles, and heading of accelerating vehicles. Each
measurement category is treated as an observational feature
of vehicles in the scene. The features we find useful from
pedestrian tracks are their spatial density and distribution of
headings. The spatial density of vehicles or pedestrians is
modeled as a draw from a product of Poisson distributions,
one Poisson per spatial block j and indexed by object cate-
gory i, F (ϕjzt,i) = Poisson(ϕjzt,i). The parameter of each
Poisson is modeled as a draw from a gamma distribution
Hj = Gamma(a, b). Each of the other features mentioned
are modeled as draws from a Jn-dimensional multinomial,
a different length for each mode n, with parameters drawn
from a Dirichlet distribution, F (ϕjzt,i) = Multi(ϕjzt,i) and
Hj = Dir( βJn , ...,

β
Jn

).
Rather than treating each feature as a single concatenated

feature, we propose a more robust model that allows these
features to be drawn independently from differing distribution
types, allows different sets of features for different categories
of observed object, and allows for missing features or object
types. This also differs from LDA where the features are de-
pendent on one another since the topics normalize to one. The
more flexible model we propose is the multi-feature dLDA.

4. MULTI-FEATURE DLDA MODEL

In the multi-feature dLDA model, simultaneous measures,
or multiple observational features, are modeled collectively
where each feature is modeled with an independent generative
distribution. Since each feature is independent, observations
can consist of differing distribution types. The multi-feature
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form of dLDA we propose is as follows.

{xn,t,i}Nn=1 ∼
{
Fn(Φn,zt,i)

}N
n=1

zt,i ∼ Multi(τ1t , ..., τ
K
t ), zt,i ∈ {1,K}

zt=1,i ∼ Multi(π1)

τ t = (1− wt)τ t−1 + (wt)πt

πt ∼ Dir(
α

K
, ...,

α

K
)

wt
i.i.d.∼ Beta(c0, d0)

{Φn,k}Nn=1

i.i.d.∼ {Hn}Nn=1 (2)

Here the observational set of N features {xn,t,i}Nn=1 are col-
lectively generated from the same topic or activity groups
{Φn,k}Nn=1 that are shared globally. The activities them-
selves Φn,k are multi-featured, matching the observational
set. Since this model is not specifically designed for doc-
ument analysis, the document index i can be thought of as
an observed object category, such as vehicles or pedestrians
in the scene. Not all object categories need to be present
in each time step, and their total number available in each
time step is tracked as It. The observations are written as
vectors allowing the generative process modeling them to
be written more generally. In considering the observation
xn,t,i ∼ Fn(Φn,zt,i) of feature n and treating the observa-
tion as a vector of length J , the activities of an individual

feature take the form Φk =
{
ϕjk

}J
j=1

for a collection of

J multinomials, as in (1). Other forms include Φk = ϕk,
where the observations consists of multiple draws from the

same multinomial, as well as Φk =
{
ϕjk

}J
j=1

, where the

observations are represented by a collection of J Poisson dis-
tributions. Representing features this way is convenient since
any missing features can be marginalized out. A graphical
representation for this multi-feature dLDA model is shown in
Figure 4. In the work presented here, we empirically find the
model is robust to various settings of the hyperparameters and
we consistently observe empty clusters (K = 50) suggesting
that the model consistently learns the appropriate degree of
complexity in the data.

5. EXPERIMENTAL RESULTS

To evaluate the ability of the multi-feature dLDA model to
learn types of activity, we used publicly available video data
from the Next Generation Simulation Community (NGSIM)
(http://ngsim-community.org) of vehicle and pedestrian traf-
fic centered on an intersection in a U.S. city. The video
consists of a fixed view of an intersection on Peachtree Street
in Atlanta, GA, sampled at 20Hz and taken from the vantage
point of the top of a nearby building. To match the activity
categories the model finds with easily identifiable attributes
of each intersection, we chose to match the model outputs to

Fig. 1. (a) Graphical representation for the multi-feature
dLDA model.

traffic light states within each intersection since they control
vehicle and pedestrian flow through the intersection. The
ground-truth of these light states can effectively be gathered
by watching the video and compared directly with activity
topics (traffic flow) learned by the model, thereby allowing a
quantitative analysis of model performance. Through visual
inspection of the video, the traffic light states of go (green),
stop (red), and protected turn (green arrow) are evident,
whereas the warning of transition from go to stop (yellow)
is not, and is not considered here as a separate state. In the
video data there are four distinct traffic light states that are
cycled through, depicted in Table 1.

Table 1. Association of multi-feature dLDA mixture compo-
nents with traffic light states.

In this video data, the multi-feature dLDA learns eight
topic mixture components of traffic activity within this inter-
section (vehicles shown in Fig. 2). The topic mixtures capture
well the traffic flow corresponding to particular traffic light
states. The model allows an increasing sophistication through
time, and additional mixture components (5-8) are found in
the second half of the data. The vehicle tracks in activity
one show a mixture of right of way traffic flow and left turns.
However, in the video, it is clear that many left turns occur at
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times when the traffic going straight has the right of way. In
this scenario, the left turns occur when there is a break in the
oncoming traffic and are not protected left turns. This is accu-
rately captured by the model. The protected left turns in this
direction are captured by activity four. In activity two, there
is a similar mixing of left turns and oncoming straight traffic.
However, here the model captures mostly protected turns, but
there is a little overlap with the oncoming straight “right of
way” traffic light state.

Fig. 2. Multi-feature dLDA mixture components through
time (upper left) and vehicle tracks segmented by most likely
mixture component. Mixtures are ranked by their abundance.

To generate quantitative results of model prediction, we
used the first 75% (2233 frames) of the video for model train-
ing and the last 25% (758 frames) for testing. In our test-
ing, we ran the multi-feature dLDA model with both vehicle
and pedestrian tracks as well as with vehicle tracks alone. By
removing the dynamic timing portion of the model, we ef-
fectively create a multi-feature LDA model that we are able
to generate comparative results with using the vehicle tracks.
Additionally, we compare these results with both the dLDA
and the LDA model using only the single best feature (head-
ing of accelerating vehicles). The comparative ROC curves
for each model’s ability to predict traffic light state, based on
the manually extracted ground-truth is shown in Fig. 5, and
the area under the curve (AUC) calculations for each curve are
provided in Table 2. In these results, the multi-feature dLDA
model outperforms each of the other models we tested for
traffic light state prediction. The multi-feature dLDA model
with vehicles alone has a marginally better AUC than the
multi-feature dLDA model with both vehicles and pedestrian
tracks. Due to the nature of the more erratic pedestrian traffic,
it adds complexity and degrades performance. This suggests
the need for future work in feature refinement. Both LDA

models learned only the two most prominent states and lead to
the least accurate predictions. Overall, it is clear that allowing
the activity mixtures to vary in time allows better traffic light
state prediction, and that predictive performance improves by
having multiple observable features.

Fig. 3. Performance results for traffic light state prediction
using various models. The proposed model, MF dLDA, per-
forms best. Neither LDA method is able to find either of the
protected turn traffic light states.

Table 2. Area Under the Curve Measures for Traffic Light
State Prediction

6. CONCLUSION

In this paper we present a natural extension of dLDA [18]
that accommodates multiple independent observational fea-
tures and simultaneous object classes, applied to complex
video data of intersections in a U.S. city. The use of dLDA to
activity modeling is new, and we quantitatively show in our
example that the proposed multi-feature dLDA model outper-
forms a variety of established topic models. Additionally, the
multi-feature nature of the model inherently lends itself to a
wide range of time-evolving systems, making it adaptable to
any number of scenarios where unsupervised time-evolving
clustering is useful.
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