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ABSTRACT 

 
Since modern computational devices are required to store 
and process increasing amounts of data generated from 
various sources, efficient algorithms for identification of 
significant information in the data are becoming essential. 
Sensory recordings are one example where automatic and 
continuous storing and processing of large amounts of data 
is needed. Therefore, algorithms that can alleviate the 
computational load of the devices and reduce their storage 
requirements by removing uninformative data are important. 
In this work we propose a method for data reduction based 
on theories of human attention. The method detects 
temporally salient events based on the context in which they 
occur and retains only those sections of the input signal. The 
algorithm is tested as a pre-processing stage in a weakly 
supervised keyword learning experiment where it is shown 
to significantly improve the quality of the codebooks used in 
the pattern discovery process. 
 

Index Terms— attention modeling, data redundancy 
reduction, data compression, machine learning 

 
1. INTRODUCTION 

 
The development of information technology has led to an 
almost ubiquitous presence of devices which can create, 
store, and process data. Furthermore, much of this data is 
not user generated but can be collected automatically by 
devices with the appropriate sensory equipment. A typical 
example is a mobile device which is capable of collecting 
and storing a multitude of sensory data including, for 
instance, accelerometer, audio, and location data. As the 
amount of data is becoming increasingly high for a device to 
process and store, means of reducing and therefore 
alleviating the computational load for the device, especially 
given the resource constraints (for instance battery 
autonomy, processor speed, applications running), need to 
be considered. The traditional approach to data reduction is 
by feature extraction and compression where data size is 
reduced throughout the data and the signal is post-processed 
in its entirety (common post-processing scenarios for mobile 
devices include context recognition and activity 
recognition). Another approach to the data reduction       

problem is to discard or reduce the resolution of only parts 
of the signal which do not carry significant information with 
regard to the system before post processing. In this view, a 
number of different examples exist (see [1-7]) where the 
main focus is on utilizing theories from the study of human 
attention and applying them on computational 
implementations of data selection models.  

The term of attention is frequently used with reference to 
both input selectivity and capacity constraints. Selectivity, 
from the perspective of human perception, is reflected in the 
small fragment of the sensory information which finally 
reaches our awareness. Capacity constraints, on the other 
hand, are illuminated by the difficulty of executing multiple 
tasks simultaneously. These ideas extend to engineering 
where computational modeling of attention has many areas 
of application such as machine vision [1,2], audio 
processing [3,4], data reduction and compression [5,6]. 
Currently the overall focus of the effort in these areas is on 
the development of techniques to detect salient features in 
signals and thus reducing the resolution of signal segments 
that are deemed non-significant. This typically leads to a 
spatial, temporal or spatiotemporal reduction in the 
resolution. For example, in the visual domain, Bruce and 
Tsotsos [4] proposed a method for saliency computation 
based on the idea that localized saliency is underpinned by a 
maximization of the information collected from one’s 
environment. In the auditory domain, Kayser et al. [5] 
proposed an auditory saliency map in an attempt to describe 
and understand the process of auditory selectivity. This map 
can be used in order to extract salient events in natural 
acoustic scenarios. Finally, regarding data reduction and 
compression, the main approaches have to do with 
computation of saliency maps and (i) resolution reduction 
[5,6], and (ii) signal cropping [7]. The majority of the work, 
however, is carried out in the domains of image, video, and 
audio.  

This work extends the efforts as presented in [7] for data 
reduction by utilizing knowledge from human attention 
theories [8] and memory [9]. Previous work (see e.g., [3-7]) 
focused primarily on saliency detection based on processed 
representations of the signal at hand. For example, Kayser et 
al. [5] used the signal’s spectral properties whereas Wrigley 
and Brown [3] utilized a complex architecture for 
processing the signal at various different levels (e.g. 
cochlear filtering, corellogram).  
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Fig. 1: Multi-store memory model (adapted from Atkinson and 
Shiffrin [9]) 
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Fig. 2: Overview of ATF structure 

In the current work, a novel approach for data reduction 
by attention based temporal filtering in generic sensory data 
is presented. The attention temporal filter (ATF) approach 
differentiates from earlier attempts in that it utilizes the 
signal properties purely in the time domain. The method and 
model behind it draws from the early attention theories and 
combines a human memory model in order to build the 
method for context-based selection of significant temporal 
events. The basic idea is that as a signal’s properties change 
over time, the incurred changes carry significance with 
regard to the temporal context at the time they occurred. 
Therefore, significant events, and in extent, more temporally 
salient events, are more likely to carry important 
information for the system at hand. The proposed method is 
tested as a pre-processing stage in an unsupervised keyword 
learning experiment which simulates human infant language 
acquisition process. The results are compared against a 
baseline system without any data cleaning. 
 

2. METHODS 
 
The detection of temporally salient events in ATF is 
performed on the basis of the creation of a context temporal 
distance matrix (CTDM). The algorithm consists of the 
following steps: (i) generation and initialization of CTDM, 
(ii) attenuation of data in CTDM, and (iii) hierarchical 
clustering and data selection. 
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Fig. 3: Structure of context 

 
2.1. Context temporal distance matrix 
 
In ATF, the fundamental element for the processing of the 
sensory signals is the CTDM. To set the ground for the 
analysis of CTDM, two basic concepts derived from 
Atkinson’s and Shiffrin’s multi-store memory model [9] are 
essential (see Figure 1), namely: (i) the sensory store (stse) 
and (ii) the short-term store (stst). The former defines a 
memory store which is associated with each sensory input 
and where it holds information for a very short period of 
time whereas the latter defines a memory store which has 
also very limited capacity and which holds information for 
longer periods of time. These components precede the long-
term storage of information in humans and therefore data 
held in them is not necessarily permanently stored. The 
short-term store can consequently keep information about 
the context with which a current sensory input can be 
compared against. Extending this model to the ATF, the 
sensory store can be defined as the current signal input 
under examination while the short-term store can be defined 
as a more extensive collection of previous inputs which stay 
in the memory buffer in a queue-type manner (first in first 
out). Therefore, stse holds the current system input while stst 
holds the system’s context (earlier inputs, see Figure 2,3).  

Specifically, the signal is divided into frames of duration 
that depends on the type of the input. For audio input this 
corresponds to frames of 25 ms without overlap ( ms

se
stt 25= ). 

According to [10], stst has the capacity to hold 
approximately 7±2 individual frames of information. Hence, 
the context size N can take values between 1 and 9. 
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Therefore, the temporal context for the current input 
frame will have length N previous frames and duration of 

  

€ 

tst
st  ms (see Figure 2). Based on this, CTDM matrix of size 

NxN is constructed. In this matrix, the first row represents 
the change between the current frame (fc) and the previous N 
frames (fc-i, 1≤i≤N). For every new frame that arrives at the 
system, the context change is recalculated and placed at the 
first row, therefore pushing the previous, one position lower 
(e.g. row i to row i+1) and pushing row N out of the matrix. 

The context change is calculated by taking the Euclidean 
distances between the current frame and each of the context 
frames, thereby generating one new first row for CTDM 
(equations 2, 3). The current input frame in the matrix is 
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denoted with f
c0

while f
c− i

 (1≤i≤N-1) denotes the current 
inputs of previous context changes. For each frame, one 
time domain feature is extracted which is used in the 
calculation of the Euclidean distances. Typical features used 
are the energy or the average amplitude of the signal.   
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2.2. Attenuation of data in CTDM 

 
Data stored in CTDM are perceptually weighted in order to 
account for the attenuation of the short-term memory at 
different time lags. This is based on the findings of Peterson 
and Peterson [11] who addressed the problem of information 
recollection from the short-term store. According to their 
results, the ability to recall items from short-term memory 
dropped rapidly over time (approximately as a linear 
function of time). Therefore, in order to simulate this 
behavior in CTDM, an attenuation matrix is generated. The 
elements of the attenuation matrix are calculated based on 
equation 5 and appear in the form of equation 4. Equation 4 
generates weighs for each element in the NxN matrix and 
attenuates all other elements except the first (C11). The 
weighing is performed in a liner manner, where cells in 
CDTM closer to the first element in the matrix are 
attenuated less while the ones further away are attenuated 
the most. The variable S in the equation is the attenuation 
step which is calculated as S=0.9/N, where N is the size of 
the context. The mitigated distances in the attenuated 
CDTM (equation 6) have perceptual significance as frames 
that are further away from the current may carry less 
significance in the given context. 
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2.3. Hierarchical clustering and data selection 
 
Clustering is applied to all individual entries of the 
attenuated CTDM matrix for each context change (shift of 
the current frame to the next). The entries are classified into 
k clusters, where k is chosen to be close to N in order to 
reflect the potential level of variability in the context. In 
order to achieve a hierarchical indexing of the elements in 

CTDM, the k clusters are assigned k equally spaced 
centroids between the minimum and maximum values of 
CDTM. Therefore the produced set of clusters S will be an 
order set with centroids m such as: 

S = S1,S2,,Sk{ } where m1 <m2 <<mk
  

This allows the generation of a ranked CTDM with 
elements that contain indexes of their contextual 
significance. That is, elements which have low index have 
low significance in the context while the ones with high 
index have correspondingly high significance. The selection 
decision of the current frame in the context is performed on 
the basis of C11. A typical rule is that if C11 ∈ Sk, k=N then 
the frame is allowed to pass through the filter. Less strict 
rules can be also applied where the filter will be less 
sensitive to context changes such as if C11 ∈ (Sk∪Sk-1∪Sk-2). 

 
3. EXPERIMENTS 

 
3.1. Experimental setup and evaluation 
 
The performance of the ATF filtering is demonstrated in a 
weakly supervised word learning experiment from 
continuous child-directed speech (see [12–14]) using the 
CM algorithm [12]. In the experiment, the task of the 
learning algorithm is to discover acoustic patterns (words) in 
speech that co-occur with contextual labels denoting the 
keywords present in each utterance. Unlike standard 
supervised training, the alignment between audio and labels 
is only available at the utterance level and the relative 
ordering of keywords is unknown. This type of simulation is 
often used to study audiovisual associative learning of the 
human language acquisition process [15].  

For data, one speaker (Female-01) from the 
CAREGIVER Y2 UK corpus is used [16]. The data contains 
2397 utterances of continuous English speech with 1-4 
keywords occurring in each sentence. In addition, the 
keywords are surrounded by carrier sentences containing 
verbs, function words and such. There are a total of 50 
unique keywords in the material. In the experiments, the 
2000 first utterances are used to train the recognizer for the 
keywords and testing is performed with the remaining 397 
utterances. For each test utterance, the classifier was asked 
to provide N most likely keywords and these hypotheses 
were then compared against the true N words in the 
annotation. Overall recognition accuracy was measured as 
the proportion of correct hypotheses, i.e. NCORRECT/NTOT 
over all 397 sentences in the test set.  

The speech data was pre-processed by first applying the 
ATF to the original audio waveforms (fs = 16000 Hz) and 
extracting 39 dimensional MFCC features (13 static, 13 
ΔMFCC, and 13 ΔΔMFCC coefficients) with 25–ms 
window length using 10 ms shifts. Then the MFCC frames 
filtered away by the ATF were discarded but the timing 
information of the remaining frames was maintained. 
Finally, the MFCCs were vector quantized (VQ) by creating 
a codebook of size NA using k-means clustering on 10000 
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randomly chosen features from the training data and then 
quantizing all frames using the codebook. Four different 
codebook sizes (NA = 32, 64, 128 and 256) were studied in 
the experiments.  

As the classifier, we used the concept matrix (CM) 
algorithm [12] designed for the current type of weakly 
supervised learning from discrete sequential data. CM finds 
the correspondence between acoustic patterns (VQ 
sequences of words) and the contextual labels by modeling 
the VQ data as a mixture of bi-grams measured from 
different temporal distances and finding the maximum 
likelihood solution that a set of lagged bi-grams occurs 
during a specific keyword.  

During recognition, given input sequence X, the total 
activation of a keyword c is measured as 

∑∑
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1 ),)(),(|()|(
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where L is the length of the signal, k is the lag at which bi-
gram is computed and |k| is the total number of lags (k = {1, 
2, …, 20} in the current work). The CM-model P(c|X) on the 
right-hand side of the equation was computed according to 
[12]. The N most likely keywords were chosen as the 
hypotheses for the input X (see above).  

In order to compare the effect of ATF to the baseline 
performance, three experimental conditions were studied: 
baseline keyword learning result without ATF (“baseline”), 
filtering all training and testing data with the ATF (“F-
ATF”), and filtering the data for VQ codebook generation 
but training and testing the classifier itself with full-length 
speech signals (“VQ-ATF”). The experiment was repeated 
eight times for each condition in order to measure the 
average performance across the trials. 
 
3.2. Results 
 
Figure 4 shows an example of applying ATF filtering to a 
speech signal. As can be observed, it efficiently filters out 
the silent portions of the signal preceding and following the 
utterance, but also some stationary parts of the signal, 
effectively acting as a combined onset- and voice activity 
detector. Figure 5 shows the keyword recognition 
performance as a function of codebook size for the three 
experimental conditions. The vertical bars denote the 
standard deviation across trials. 
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Fig. 4: An example of ATF filtering output for utterance “Mommy 
takes the happy cookie”. The binary mask shows passed samples 
(high value) and filtered samples (low value). 
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Fig. 5: Keyword recognition accuracies as a function of codebook 
sizes for four different codebook sizes.  

As can be observed, the VQ-ATF performs the best 
across all variants. On average, VQ-ATF leads to 29% 
reduction in word error rate in comparison to the baseline 
system (p << 0.01, paired t-test) across all codebook sizes. 
Also, the standard deviation of performance across different 
iterations is smaller for VQ-ATF than the baseline system 
(without any filtering). In contrast, the F-ATF system that 
uses only a subset of the frames of each signal data performs 
at the worst level. This is not surprising, however, since the 
data reduction is notable (approx. 57.7%) and mainly 
transitions and onsets of the stationary periods are 
maintained in the signal. 

In general, it seems that the application of ATF to the 
data used in codebook generation enhances the quality of 
the codebooks by allowing more principled selection of 
feature frames to the clustering process. This suggests that it 
may also be suitable for other systems susceptible to proper 
selection of representative feature frames such as the k-
Nearest Neighbors classifier or even Gaussian Mixture 
Models. However, according to the findings, it may not be 
suitable as a front-end for sequential classifiers such as CMs 
or Hidden-Markov Models during the recognition stage due 
to the fact that typically redundant or even low-quality 
features are more beneficial in the recognition process than 
no features at all. 
 

4. CONCLUSIONS 
 

In this work, a novel approach for data redundancy 
reduction based on the detection of temporally salient events 
was presented. The proposed method is based on theories of 
attention and memory and performs a filtering operation on 
sensory signals in order to select temporally important 
inputs in the defined context. Based on the experiments, the 
ATF approach significantly reduced the error rate as it 
improved the feature selection for the clustering of 
codebooks for pattern recognition. In future work, the ATF 
will be tested using different sensory signals and on other 
recognition tasks (such as activity detection). 
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