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ABSTRACT
This paper addresses the problem of automatic feature extraction for
signal classification. In order to handle non-stationarity, features are
designed in the time-frequency domain using a Filter Bank as the
mapping function, which enables an easy interpretation for practi-
tioners. The strategy adopted is to jointly learn a Filter Bank with
a Support Vector Machine by casting the optimization program as a
Multiple Kernel Learning problem. This solves the program for a
finite set of filters. Thus, in order to handle an infinite number of
filters, a novel active constraint algorithm is proposed based on the
latest breakthroughs. Our method has been tested on a toy dataset
and compared to classical methods with competitive results.

Index Terms— Time-frequency representation, Filter Bank,
signal classification, Multiple Kernel Learning, SVM

1. INTRODUCTION

In recent years, Signal Processing has broadened its focus towards
Machine Learning methods. In this scope, features are needed
to characterize similarities within a class and disparities between
classes to be distinguished. This property, called discrimination,
obviously affects the classifier accuracy and thus features should
be more elaborated than a simple time representation. There is a
lot of possible features for signal classification rocking from physi-
cal perceptions (loudness), statistical moments (covariance matrix),
spectral characterization (Fourier transform) and time-frequency
representations (spectrograms, wavelet decompositions). However,
the features extractor of this preprocessing step is usually arbitrarily
chosen and abusively considered independently from the choice of
the pattern recognition algorithm, so that there is no guarantee of
any classification efficiency.

This problem of finding discriminative features with respect to
the chosen classifier became a field of interest in the 1990’s. It
appeared in different areas for different categories of features (e.g.
[1–9]). Particularly in signal classification, discriminative features
learning was especially developed for time-frequency representa-
tions (TFR), which may contain more information than physical and
statistical descriptors and present a real advantage for non-stationary
signals. The bulk of the scientific contributions deals with wavelets
learning combined with a Support Vector Machine (SVM) [10–14].
Moreover, optimization methods usually boil down to an exhaus-
tive search or an evolutionary algorithm. More recently, Yger et
al. have proposed an efficient method to learn a mixture of wavelet
transforms based on the Kernel Learning theory [15]. Besides, let
us mention that dictionaries [2, 16, 17] and Cohen’s class TFRs [18]
have also been studied in the discriminative approach.

In [19, 20], the authors chose the Filter Bank (FB) model [21]
to extract features from signals and tried to learn it in unison with a
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Hidden Markov Chain based classifier through an evolutionary algo-
rithm. In the past couple of decades, FBs have been well studied in
the reconstructive approach for denoising and compression [21–25]
and appeared with these studies to be adequate for discriminative
feature extraction.

In order to fill the gap between the choice of the features ex-
tractor among the various Signal Processing tools and the classi-
fier learning, we investigate, in this work, the way to jointly learn
a FB with a SVM. FBs have been chosen for their ability to model
a wide class of atomic decompositions (cosine transform, short-time
Fourier transform, wavelet transform, etc.). Moreover the very defi-
nition of the FB [21] ensures a direct time-frequency interpretation.
However, while most of the aforementioned approaches achieve a
posterior optimization (the cost function is a misclassification rate),
we prefer the more theoretical way of the prior optimization using
the SVM objective as the cost function. For this purpose, we follow
the same technique as [15], casting the problem as a Multiple Ker-
nel Learning problem [26] in which each kernel is associated to a
parametrized filter.

To explain our approach, we first remind of the kernelized
framework for classification, especially the SVM and the Mul-
tiple Kernel Learning (MKL). Then we expose basics on FBs
and introduce the Filter-MKL algorithm, which enables to jointly
learn a FB with a SVM. In order to tackle the infinite amount
of filters, we propose an active constraint algorithm based on the
Karush–Kuhn–Tucker (KKT) conditions. This one extends the work
by Varma and Babu [27] to an endless number of kernels. Finally,
our method is evaluated on a toy dataset and compared to classical
Signal Processing transforms combined with a SVM.

2. KERNELIZED FRAMEWORK FOR CLASSIFICATION

2.1. Support Vector Machine

Let X be an arbitrary compact input space, S+
X the set of symmetric

positive definite kernels onX andO∞ the set of all training datasets:
O∞ =

⋃+∞
N=1(X

N ×YN ) (where Y denotes the set of labels; here,
Y = {−1, 1}).

SVM is a well known algorithm that, given a training set
((xi, yi))1≤i≤N fromO∞ (here, xi are signals), a kernel k from S+

X
and a trade-off parameterC ( 1

N
≤ C [28]), returns the optimal linear

classifier f∗ in the feature space Hk defined by k [29]. SVM tackles
the problem of minimizing the structural risk R ((xi)1≤i≤N , k, f)
with respect to f , where, if wf denotes the unique normal vector of
Hk that defines f ,

R ((xi)1≤i≤N , k, f) =
1

2
‖wf‖2 + C

N∑
i=1

max(0, 1− yif(xi)).

Let Y = diag(y) and K be the positive definite kernel matrix de-
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fined by K = (k(xi, xj))1≤i,j≤N . In practice SVM solves a dual
form (1) of the previous problem (in the forthcoming sections, we
note J ((xi)1≤i≤N , k) the optimal value of (1)), where 1 stands for
the indicator vector and 4 for a pointwise inequality.

minimize
α∈RN

1
2
αTY KY α− 1Tα

subject to 0 4 α 4 C1, yTα = 0
(1)

Then the KKT conditions give a parametrization (including the bias
b from R) of the optimal linear functional f∗:

∀x ∈ X , f∗(x) =
N∑
i=1

αiyik(xi, x) + b.

2.2. Multiple Kernel Learning

Multiple Kernel Learning is an algorithm that jointly learns a
sparse convex combination of kernels with the associated opti-
mal SVM classifier. Thus, let (si)1≤i≤d be a set of kernels from
S+
X , called spanning kernels. In practice, MKL solves the convex

problem (2) [26], which boils down to minimize the SVM risk
R ((xi)1≤i≤N , k, f) with respect to f and k, lying in the set of
the convex combinations of the spanning kernels (si)1≤i≤d with a
normalized weights sum.

minimize
µ∈Rd

J
(
(xi)1≤i≤N ,

∑d
i=1 µisi

)
subject to 1Tµ = 1, µ < 0

(2)

In 2009, Varma and Babu proposed a more general framework
considering non-convex combinations of kernels [27]. In this paper,
we will be interested in the Hadamard product of kernels. Then the
Generalized MKL (GMKL) algorithm solves the non-convex prob-
lem (3) by finding a local minimum (with σ the coefficient of the
sparsity penalty). Even though the solution is not global, this may
be more efficient than MKL in some cases.

minimize
µ∈Rd

J
(
(xi)1≤i≤N ,

∏d
i=1 s

µi
i

)
+ σ1Tµ

subject to µ < 0
(3)

3. AUTOMATED TFR DESIGN

3.1. Filter Bank Kernel Learning

Let F be the set of FBs and ? : F ×
⋃+∞
N=1 X

N →
⋃+∞
N=1 X

N the
filtering operator. In practice, a FB is a set of linear filters followed
by downsampling operators (called decimation) [30]. Note that for
the purpose of classification, outputs of the filters are concatenated
in a single vector.

The problem studied in this article is to design an algorithm

B : O∞ → F ×Lk,

where Lk is the set of linear functionals of Hk, such that

B ((xi, yi)1≤i≤N ) = argmin
H∈F, f∈Lk

R ((H ? xi)1≤i≤N , k, f) . (4)

In other words, the algorithm B jointly learns the optimal TFR
(among FBs) and the optimal SVM classifier in the time-frequency
domain mapped by the resulting TFR.

The idea of the proposed method (given in algorithm 1) is to take
advantage of the Multiple Kernel Learning framework by associating

one normalized filter and its decimation factor to each kernel. Let k
be either the linear or a Gaussian kernel. The set (si)1≤i≤d of MKL
spanning kernels is made as follow:

∀i ∈ J1, dK, si = k(`i ? ·, `i ? ·), (5)

where `i (i ∈ J1, dK) is a FB composed by a single filter and its
associated decimation factor.

Data: training dataset (xi, yi)1≤i≤N
Result: FB F and linear functional f∗k
(`i)1≤i≤d ← candidate filters and their decimation factors;1
(si)1≤i≤d ← kernels from (`i)1≤i≤d {formula (5)};2
(µ, f∗q )← Solve (G)MKL with kernels (si)1≤i≤d;3
F ← FB based on {√µi`i, i ∈ J1, dK ∧ µi 6= 0};4
f∗k ← f∗q ;5

Algorithm 1: Restricted Filter-MKL algorithm.

Consider the notations of the algorithm 1 and let us prove that
the algorithm 1 solves the problem (4) if F is restricted to the set
F̃` of FBs based on a given set of spanning filters (`i)1≤i≤d and
weighted such that the weights `2–norm equals 1. Suppose that k is
the linear kernel: k = 〈·|·〉X . Then the resulting kernel from MKL
is q =

∑d
i=1 µisi and

∀(x1, x2) ∈ X 2,
k(F ? x1, F ? x2)

=k


 (
√
µ1`1) ? x1

...
(
√
µd`d) ? x1

 ,
 (
√
µ1`1) ? x2

...
(
√
µd`d) ? x2




=
∑d
i=1 k

(
(
√
µi`i) ? x1, (

√
µi`i) ? x2

)
=
∑d
i=1 µi k(`i ? x1, `i ? x2)

=q(x1, x2).

(6)

The equality (6) proves that f∗k is well defined (since f∗q is
a linear functional of the feature space induced by the kernel k)
and that the couple (F, f∗k ) minimizes R ((· ? xi)1≤i≤N , k, ·) on
F̃`×Lk. Indeed, for all (H, gk) in F̃`×Lk, withH = (

√
λi`i)1≤i≤d,

let

q′ =

d∑
i=1

λik(`i ? ·, `i ? ·),

then, as λ is admissible for the MKL problem (1Tλ = 1 and λ < 0),

R ((H ? xi)1≤i≤N , k, gk) = R
(
(xi)1≤i≤N , q

′, gk
)

≥ R
(
(xi)1≤i≤N , q, f

∗
q

)
= R ((F ? xi)1≤i≤N , k, f

∗
k ) .

Suppose now that k is a Gaussian kernel. Then the proof is rig-
orously identical to the previous one, substituting the MKL solver by
the GMKL one in the algorithm 1 (line 3) and kernels sums by ker-
nels Hadamard products in the equality (6). Obviously, as GMKL,
only achieves a local minimum, our algorithm also finds a subopti-
mal solution.

3.2. Solving the main problem with infinitely many filters

In the previous section, the algorithm 1 solves the problem (4) for
a finite number of spanning filters. In this section, we explain how
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to solve the problem (4) with an endless number of spanning fil-
ters, which leads us to a variant of the known IKL algorithm [31]
(for a linear kernel) and to the proposed Generalized IKL (GIKL)
algorithm (for a Gaussian kernel). The general algorithm to jointly
learn a FB with a SVM, which leans on both IKL and GIKL, is the
algorithm 2.

Our approach restrictsF to the set F̃ of FBs based on filters that
are spectrally shifted and scaled version of the low-pass filter whose
finite impulse response (FIR) is 1. Thus every filter is parametrized
by its spectral mode fm, its spectral width fw (fm, fw ∈ [0, 1

2
]) and

its magnitude. The FIR h of a filter of length f is [32]

∀k ∈ J1, fK, hk =
sin(πkfw) sin(2π(k − 1)fm)

kQ
,

whereQ is a normalization factor giving the desired magnitude. The
previous formula is obtained through the window method [32] with a
rectangular window but other types of windows (like Hann or Black-
man) can be used.

The proposed method (described in the algorithm 2 and ex-
plained thereafter) applies the principle of active set [33]. The idea
of active set lies upon the notion of active kernels (which results
from the sparsity of the MKL solution): the kernels for which the
weights are positive. The other kernels have no effect on the solution
for their weights are null. They can be neglected beforehand without
changing the solution of the problem.

Data: training dataset (xi, yi)1≤i≤N
Result: FB and linear functional

A← grid of filter spectral positions and widths;1
(st)t∈A ← kernels from filters based on A {formula (5)};2
while not suboptimal do3

µ← Solve (G)MKL with kernels (st)t∈A;4
A← A\{t, (t ∈ A) ∧ (µt = 0)};5
θ ← argmax

t∈P
T(G)MKL(t) {definitions in section 3.3)};

6

if T(G)MKL(θ) > 0 then {optimality condition violated}7
A← A ∪ {θ};8

else9
Subptimality is reached;10

Deduce from A the suboptimal FB and from the MKL output11
the suboptimal linear functional;

Algorithm 2: Filter-MKL algorithm.

Let the algorithm start from a guess on the active set and solve
the MKL problem. As the solution is sparse, some kernels have pos-
itive weights (the active kernels) while others got null weights. Then
if a kernel (out of the active set) violates the optimality conditions
(embodied by T(G)MKL(θ) > 0 in the algorithm 2), it means that the
guess on the active set was wrong and that this kernel was missing
(otherwise, it would not violate the optimality conditions). So, let us
add it to the set of spanning kernels (keeping only active kernels at
the current iteration) and iterate alternatively the MKL step and the
update of the spanning kernels set until optimality. In this context,
the Filter-MKL algorithm solves the MKL problem for a given set
of filters, then removes non-active filters and adds the filter that most
violates the optimality conditions.

3.3. Checking the optimality

As explained earlier, the main point of the method is to check the op-
timality of a solution (algorithm 2, line 7), which should be an easy

step in order to get a workable algorithm. In the case of a linear ker-
nel (MKL), the work by Gehler et al. [31] that investigates a way to
learn a convex combination of an endless number of kernels (Infinite
Kernel Learning algorithm) gives the the optimality condition.

To extend MKL to IKL, let us replace the finite set of ker-
nels (si)1≤i≤d by an infinite parametrized set (sθ)θ∈P , where P
is the set of kernel parameters. Here, parameters are fm and fw
thus P = [0, 1

2
]2. Let JMKL be the objective value of the prob-

lem (2) for an infinite set of kernels, i.e. JMKL : µ ∈ RP+ 7→
J
(
(xi)1≤i≤N ,

∑
θ∈P µθsθ

)
with µ sparse and 1Tµ = 1. In this

framework the KKT optimality conditions give (see theorem 4.1
from [34] for the differentiation): TMKL ≤ 0 with

∀θ ∈ P, TMKL(θ) = −
∂JMKL

∂µθ
(µ)− λ =

1

2
α∗

T
Y KθY α

∗ − λ,

where Y = diag(y), Kθ is the positive definite kernel matrix de-
fined by Kθ = (sθ(xi, xj))1≤i,j≤N , α∗ is the optimal dual variable
of the SVM subproblem (1) and λ is the Lagrange multiplier associ-
ated to the sparsity constraint of the MKL problem (2).

In the case of a Gaussian kernel (GMKL), let us derive TGMKL.
Let JGMKL : µ ∈ RP+ 7→ J

(
(xi)1≤i≤N ,

∏
θ∈P s

µθ
θ

)
+ σ1Tµ,

with µ sparse. If a point µ is suboptimal (i.e. JGMKL achieved a local
minimum), then the KKT conditions are satisfied (they are necessary
conditions for the suboptimality):

∃λ ∈ Rd+,

 ∇JGMKL(µ) + σ1− λ = 0
µ < 0
∀i ∈ J1, dK, λiµi = 0.

Then, in any case,

∇JGMKL(µ) + σ1 < 0.

Considering that the SVM kernel matrix can be formulated as
Q = exp(−γ

∑
θ∈P µθDθ), where γ is a positive number defining

the Gaussian kernel and (Dθ)θ∈P are the distance matrices in the
time-frequency domain, then the suboptimality condition can be ex-
pressed with the optimal dual variable α∗ of the SVM problem (1):
TGMKL ≤ 0 with

∀θ ∈ P,
TGMKL(θ) = −

∂JGMKL

∂µθ
(µ)− σ =

γ

2
α∗

T
Y (Dθ ◦K)Y α∗ − σ,

where ◦ is the Hadamard product. Then, the scheme to derive this
Generalized Infinite Kernel Learning algorithm, which is the exten-
sion of GMKL to an infinite number of kernels, is the same as the
one exposed by Gehler et al. [31]. A major point is thus to solve the
non-convex subproblem (7), as written in the algorithm 2 (line 6).

maximize
θ∈P

TGMKL(θ). (7)

Two approaches are implemented in the proposed Filter-MKL
(algorithm 2) in order to maximize T(G)MKL: in the first one, a grid
search is performed, then a possible gradient ascent can be applied in
order to refine the solution. In the second approach, a random search
supplants the grid search.

For an insight of the convergence property, consider that, at each
iteration, non-active kernels are removed and a new one is added
with a null weight. These new weights form a feasible point of the
new MKL problem with an objective equals to the optimal objective
of the previous MKL problem. Moreover, as the added kernel vio-
lates the KKT conditions, then the current point is not optimal. Thus
the objective value is compelled to improve.
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4. EXPERIMENTAL RESULTS

In this section, we present some results on a toy problem. Without
any prior knowledge, we have chosen quite a basic set of parame-
ters. The decimation factor is considered constant for every filter and
equal to 8, while filters can have three different lengths: 32, 64 and
128. Besides, several methods are confronted: i) DFT: magnitude
of the Discrete Fourier Transform and Gaussian SVM, ii) Wavelet:
4-Daubechies wavelet decomposition and Gaussian SVM, iii) WKL:
full stochastic Wavelet Kernel Learning with a RBF kernel [15], iv)
IKL: Filter-MKL with a linear kernel, v) GIKL: Filter-MKL with a
Gaussian kernel. Methods iv and v are those proposed in this paper.

The toy dataset is a binary problem based on two signals from
the Wavelab toolbox: Blocks and HeaviSine. A non-stationary
Gaussian colored noise (of standard deviation σnoise) is added to
each signal in order to form both classes. The figures 1 and 2 present
the classification accuracies of the several methods. The accuracy is
measured with the kappa statistic, which is as close to 1 as the clas-
sification is accurate [35]. These results have been averaged out over
10 runs. The methods have been trained with Ntrain signals and as-
sessed with 1000 signals from the toy dataset. At each run, methods
parameters have been chosen through a 5-fold cross-validation.
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Fig. 1. Classification accuracy on the test dataset (Ntrain = 30).
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Fig. 2. Learning curve on the test dataset (σnoise = 20).

Results point out the importance of data-driven TFRs (WKL and
Filter-MKL) for non-stationary signals classification, compared to
the use of a fixed wavelet 1 and of a DFT (which is as accurate as
a random choice). Moreover it has to be noticed that even though
the Gaussian version of Filter-MKL (based on the proposed GIKL

1Note that, as Daubechies wavelet transform is isometric, classifying in
the wavelet domain boils down to classify in the Shannon (temporal) domain.
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Fig. 3. Example of resulting FB in the Fourier domain. Each color
embodies a filter.

algorithm) is non-convex, it achieves better accuracies than the con-
vex and linear version of Filter-MKL for small training sets and very
noisy data. However the latter seems preferable for large training
sets since it achieves the same accuracy and is faster than the Gaus-
sian version. Besides, our methods are quite competitive with WKL
from [15]. The Wilcoxon signed rand tests performed to assess the
difference between accuracy results, demonstrate that in most cases,
at least a method of ours is significantly better than WKL (with a
significance level at 5%). At last, the example of resulting FB (fig-
ure 3) underlines that the normalized frequencies 0.025 (filter 1) and
0.134 (filter 2) are of particular interest for this classification task.
Note that the filter 1 is bimodal because of the chosen window.

The Matlab code used to produce these results is provided on the
authors’ website for the sake of reproducibility.

5. DISCUSSION ON THE CONTRIBUTION

In this paper, we proposed a novel approach to learn a discriminative
FB, that unlike [19, 20] minimizes a structural risk of classification.
First results on a toy dataset are promising even though for now,
the proposed method is quite time-consuming because of the cross-
validation step. The choice of the parameters will be optimized on
short terms. Besides in the forthcoming work, other classes of filters
will be included in order to widen the subset F̃ of FBs. Last but not
least, we plan to investigate the way to make our method robust to
signal translations to handle real signals, which are usually randomly
time shifted.

An implicit viewpoint developed all along this paper is to con-
sider that the problem (4) boils down to learn the SVM kernel
(parametrized by a FB). The result is that this study lies in the Ker-
nel Learning field and has the flavor of the work by Gehler et al. [31]
that extends the MKL to the Infinite Kernel Learning. The imple-
mentation of the IKL algorithm in [31] already uses the concept of
active kernels and of violation of the optimality conditions. Thus,
using the same principle, we proposed a novel Kernel Learning al-
gorithm, called GIKL, that extends the Generalized MKL by Varma
and Babu [27] to an infinite number of kernels. Moreover, our
method stands out from [31] in the way to solve the subproblem (al-
gorithm 2, line 6) as we apply a random search, which presents the
advantage to be quick compared to the kernel gradient computation.

Besides, the work presented here is close to the study by Yger
et al. [15], for it takes advantage of the same IKL framework. The
distinction lies in the fact that we proposed the GIKL algorithm and
in the goal: we chose to supply practitioners with interpretable tools,
using Machine Learning to tune a well known TFR along with a
SVM using a classical kernel. On the contrary, WKL learns a kernel
parametrized by parts of wavelet transforms.
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