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ABSTRACT

We investigate the problem of transforming an input sequence into a
high-dimensional output sequence in order to transcribe polyphonic
audio music into symbolic notation. We introduce a probabilistic
model based on a recurrent neural network that is able to learn real-
istic output distributions given the input and we devise an efficient
algorithm to search for the global mode of that distribution. The re-
sulting method produces musically plausible transcriptions even un-
der high levels of noise and drastically outperforms previous state-
of-the-art approaches on five datasets of synthesized sounds and real
recordings, approximately halving the test error rate.

Index Terms— Sequence transduction, restricted Boltzmann
machine, recurrent neural network, polyphonic transcription

1. INTRODUCTION

Machine learning tasks can often be formulated as the transforma-
tion, or transduction, of an input sequence into an output sequence:
speech recognition, machine translation, chord recognition or auto-
matic music transcription, for example. Recurrent neural networks
(RNN) [1] offer an interesting route for sequence transduction [2]
because of their ability to represent arbitrary output distributions in-
volving complex temporal dependencies at different time scales.

When the output predictions are high-dimensional vectors, such
as tuples of notes in musical scores, it becomes very expensive to
enumerate all possible configurations at each time step. One possible
approach is to capture high-order interactions between output vari-
ables using restricted Boltzmann machines (RBM) [3] or a tractable
variant called NADE [4], a weight-sharing form of the architecture
introduced in [5]. In a recently developed probabilistic model called
the RNN-RBM, a series of distribution estimators (one at each time
step) are conditioned on the deterministic output of an RNN [6, 7]. In
this work, we introduce an input/output extension of the RNN-RBM
that can learn to map input sequences to output sequences, whereas
the original RNN-RBM only learns the output sequence distribution.
In contrast to the approach of [2] designed for discrete output sym-
bols, or one-hot vectors, our high-dimensional paradigm requires a
more elaborate inference procedure. Other differences include our
use of second-order Hessian-free (HF) [8] optimization1 but not of
LSTM cells [9] and, for simplicity and performance reasons, our use
of a single recurrent network to perform both transcription and tem-
poral smoothing. We also do not need special “null” symbols since
the sequences are already aligned in our main task of interest: poly-
phonic music transcription.

The authors would like to thank NSERC, CIFAR and the Canada Re-
search Chairs for funding, and Compute Canada/Calcul Québec for comput-
ing resources.

1Our code is available online at http://www-etud.iro.
umontreal.ca/˜boulanni/icassp2013.

The objective of polyphonic transcription is to obtain the under-
lying notes of a polyphonic audio signal as a symbolic piano-roll,
i.e. as a binary matrix specifying precisely which notes occur at
each time step. We will show that our transduction algorithm pro-
duces more musically plausible transcriptions in both noisy and nor-
mal conditions and achieve superior overall accuracy [10] compared
to existing methods. Our approach is also an improvement over the
hybrid method in [6] that combines symbolic and acoustic models by
a product of experts and a greedy chronological search, and [11] that
operates in the time domain under Markovian assumptions. Finally,
[12] employs a bidirectional RNN without temporal smoothing and
with independent output note probabilities. Other tasks that can be
addressed by our transduction framework include automatic accom-
paniment, melody harmonization and audio music denoising.

2. PROPOSED ARCHITECTURE

2.1. Restricted Boltzmann machines

An RBM is an energy-based model where the joint probability of a
given configuration of the visible vector v ∈ {0, 1}N (output) and
the hidden vector h is:

P (v, h) = exp(−bTv v − bThh− hTWv)/Z (1)

where bv , bh and W are the model parameters and Z is the usually
intractable partition function. The marginalized probability of v is
related to the free-energy F (v) by P (v) ≡ e−F (v)/Z:

F (v) = −bTv v −
∑
i

log(1 + ebh+Wv)i (2)

The gradient of the negative log-likelihood of an observed vector v
involves two opposing terms, called the positive and negative phase:

∂(− logP (v))

∂Θ
=
∂F (v)

∂Θ
− ∂(− logZ)

∂Θ
(3)

where Θ ≡ {bv, bh,W}. The second term can be estimated by a
single sample v∗ obtained from a Gibbs chain starting at v:

∂(− logP (v))

∂Θ
' ∂F (v)

∂Θ
− ∂F (v∗)

∂Θ
. (4)

resulting in the well-known contrastive divergence algorithm [13].

2.2. NADE

The neural autoregressive distribution estimator (NADE) [4] is a
tractable model inspired by the RBM. NADE is similar to a fully
visible sigmoid belief network in that the conditional probability dis-
tribution of a visible unit vj is expressed as a nonlinear function of
the vector v<j ≡ {vk, ∀k < j}:

P (vj = 1|v<j) = σ(W>:,jhj + (bv)j) (5)
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Fig. 1. Graphical structure of the I/O RNN-RBM. Single arrows rep-
resent a deterministic function, double arrows represent the hidden-
visible connections of an RBM, dotted arrows represent optional
connections for temporal smoothing. The x → {v, h} connections
have been omitted for clarity at each time step except the last.

hj = σ(W:,<jv<j + bh) (6)

where σ(x) ≡ (1 + e−x)−1 is the logistic sigmoid function.
In the following discussion, one can substitute RBMs with

NADEs by replacing equation (4) with the exact gradient of the
negative log-likelihood cost C ≡ − logP (v):

∂C

∂(bv)j
= P (vj = 1|v<j)− vj (7)

∂C

∂bh
=

N∑
k=1

∂C

∂(bv)k
W:,khk(1− hk) (8)

∂C

∂W:,j
=

∂C

∂(bv)j
hj + vj

N∑
k=j+1

∂C

∂(bv)k
W:,khk(1− hk) (9)

In addition to the possibility of using HF for training, a tractable
distribution estimator is necessary to compare the probabilities of
different output sequences during inference.

2.3. The input/output RNN-RBM

The I/O RNN-RBM is a sequence of conditional RBMs (one
at each time step) whose parameters b

(t)
v , b

(t)
h ,W (t) are time-

dependent and depend on the sequence history at time t, denoted
A(t) ≡ {x(τ), v(τ)|τ < t} where {x(t)}, {v(t)} are respectively
the input and output sequences. Its graphical structure is depicted in
Figure 1. Note that by ignoring the input x, this model would reduce
to the RNN-RBM [6]. The I/O RNN-RBM is formally defined by
its joint probability distribution:

P ({v(t)}) =

T∏
t=1

P (v(t)|A(t)) (10)

where the right-hand side multiplicand is the marginalized probabil-
ity of the tth RBM (eq. 2) or NADE (eq. 5).

Following our previous work, we will consider the case where
only the biases are variable:

b
(t)
h = bh +Wĥhĥ

(t−1) +Wxhx
(t) (11)

b(t)v = bv +Wĥvĥ
(t−1) +Wxvx

(t) (12)

where ĥ(t) are the hidden units of a single-layer RNN:

ĥ(t) = σ(Wvĥv
(t) +Wĥĥĥ

(t−1) +Wxĥx
(t) + bĥ) (13)

where the indices of weight matrices and bias vectors have obvious
meanings. The special case Wvĥ = 0 gives rise to a transcription
network without temporal smoothing. Gradient evaluation is based
on the following general scheme:

1. Propagate the current values of the hidden units ĥ(t) in the RNN
portion of the graph using (13),

2. Calculate the RBM or NADE parameters that depend on ĥ(t), x(t)

(eq. 11-12) and obtain the log-likelihood gradient with respect to
W , b(t)v and b(t)h (eq. 4 or eq. 7-9),

3. Propagate the estimated gradient with respect to b(t)v , b
(t)
h back-

ward through time (BPTT) [1] to obtain the estimated gradient
with respect to the RNN parameters.

By setting W = 0, the I/O-RNN-RBM reduces to a regular
RNN that can be trained with the cross-entropy cost:

L({v(t)}) =
1

T

T∑
t=1

N∑
j=1

−v(t)j log p
(t)
j − (1− v(t)j ) log(1− p(t)j )

(14)
where p(t) = σ(b

(t)
v ) and equations (12) and (13) hold. We will use

this model as one of our baselines for comparison.
A potential difficulty with this training scenario stems from the

fact that since v is known during training, the model might (under-
standably) assign more weight to the symbolic information than the
acoustic information. This form of teacher forcing during training
could have dangerous consequences at test time, where the model is
autonomous and may not be able to recover from past mistakes. The
extent of this condition obviously depends on the ambiguousness of
the audio and the intrinsic predictability of the output sequences,
and can also be controlled by introducing noise to either x(τ) or
v(τ), τ < t, or by adding the regularization terms α(|Wxv|2 +
|Wxh|2)+β(|Wĥv|

2+|Wĥh|
2) to the objective function. It is trivial

to revise the stochastic gradient descent updates to take those penal-
ties into account.

3. INFERENCE

A distinctive feature of our architecture are the (optional) connec-
tions v → ĥ that implicitly tie v(t) to its historyA(t) and encourage
coherence between successive output frames, and temporal smooth-
ing in particular. At test time, predicting one time step v(t) requires
the knowledge of the previous decisions on v(τ) (for τ < t) which
are yet uncertain (not chosen optimally), and proceeding in a greedy
chronological manner does not necessarily yield configurations that
maximize the likelihood of the complete sequence2. We rather fa-
vor a global search approach analogous to the Viterbi algorithm for
discrete-state HMMs. Since in the general case the partition function
of the tth RBM depends on A(t), comparing sequence likelihoods
becomes intractable, hence our use of the tractable NADE.

Our algorithm is a variant of beam search for high-dimensional
sequences, with beam widthw and maximal branching factorK (Al-
gorithm 1). Beam search is a breadth-first tree search where only the
w most promising paths (or nodes) at depth t are kept for future
examination. In our case, a node at depth t corresponds to a subse-
quence of length t, and all descendants of that node are assumed to
share the same sequence history A(t+1); consequently, only v(t) is
allowed to change among siblings. This structure facilitates identify-
ing the most promising paths by their cumulative log-likelihood. For

2Note that without temporal smoothing (Wvĥ = 0), the v(t), 1 ≤ t ≤ T
would be conditionally independent given x and the prediction could simply
be obtained separately at each time step t.
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Algorithm 1 HIGH-DIMENSIONAL BEAM SEARCH

Find the most likely sequence {v(t), 1 ≤ t ≤ T} under a model m
with beam width w and branching factor K.

1: q ← min-priority queue
2: q.insert(0,m)
3: for t = 1 . . . T do
4: q′ ← min-priority queue of capacity w ?

5: while l,m← q.pop() do
6: for l′, v′ in m.find most probable(K) do
7: m′ ← m with v(t) := v′

8: q′.insert(l + l′,m′)
9: q ← q′

10: return q.pop()
?A min-priority queue of fixed capacity w maintains (at most) the w
highest values at all times.

high-dimensional output however, any non-leaf node has exponen-
tially many children (2N ), which in practice limits the exploration to
a fixed number K of siblings. This is necessary because enumerat-
ing the configurations at a given time step by decreasing likelihood is
intractable (e.g. for RBM or NADE) and we must resort to stochastic
search to form a pool of promising children at each node. Stochas-
tic search consists in drawing S samples of v(t)|A(t) and keeping
the K unique most probable configurations. This procedure usually
converges rapidly with S ' 10K samples, especially with strong bi-
ases coming from the conditional terms. Note that w = 1 or K = 1
reduces to a greedy search, and w = 2NT ,K = 2N corresponds to
an exhaustive breadth-first search.

When the output units v(t)j , 0 ≤ j < N are conditionally inde-
pendent given A(t), such as for a regular RNN (eq. 14), it is pos-
sible to enumerate configurations by decreasing likelihood using a
dynamic programming approach (Algorithm 2). This very efficient
algorithm in O(K logK + N logN) is based on linearly growing
priority queues, where K need not be specified in advance. Since
inference is usually the bottleneck of the computation, this optimiza-
tion makes it possible to use much higher beam widths w with un-
bounded branching factors for RNNs.

Algorithm 2 INDEPENDENT OUTPUTS INFERENCE

Enumerate the K most probable configurations of N independent
Bernoulli random variables with parameters 0 < pi < 1.

1: v0 ← {i : pi ≥ 1/2}
2: l0 ←

∑
i log(max(pi, 1− pi))

3: yield l0, v0
4: Li ← | log pi

1−pi
|

5: sort L, store corresponding permutation R
6: q ← min-priority queue
7: q.insert(L0, {0})
8: while l, v ← q.pop() do
9: yield l0 − l, v04R[v] ?

10: i← max(v)
11: if i+ 1 < N then
12: q.insert(l + Li+1, v ∪ {i+ 1})
13: q.insert(l + Li+1 − Li, v ∪ {i+ 1} \ {i})
?A4B ≡ (A ∪ B) \ (A ∩ B) denotes the symmetric difference of
two sets. R[v] indicates the R-permutation of indices in the set v.

A pathological condition that sometimes occurs with beam
search over long sequences (T � 200) is the exponential dupli-
cation of highly likely quasi-identical paths differing only at a few

Dataset HMM [16] RNN-RBM [6] Proposed
Piano-midi.de 59.5% 60.8% 64.1%
Nottingham 71.4% 77.1% 97.4%
MuseData 35.1% 44.7% 66.6%
JSB Chorales 72.0% 80.6% 91.7%

Table 1. Frame-level transcription accuracy obtained on four
datasets by the Nam et al. algorithm with HMM temporal smooth-
ing [16], using the RNN-RBM musical language model [6], or the
proposed I/O RNN-NADE model.

time steps, that quickly saturate beam width with essentially useless
variations. Several strategies have been tried with moderate success
in those cases, such as committing to the most likely path every M
time steps (periodic restarts [14]), pruning similar paths, or pruning
paths with identical τ previous time steps (the local assumption),
where τ is a maximal time lag that the chosen architecture can rea-
sonably describe (e.g. τ ' 200 for RNNs trained with HF). It is also
possible to initialize the search with Algorithm 1 then backtrack at
each node iteratively, resulting in an anytime algorithm [15].

4. EXPERIMENTS

In the following experiments, the acoustic input x(t) is constituted
of powerful DBN-based learned representations [16]. The magni-
tude spectrogram is first computed by the short-term Fourier trans-
form using a 128 ms sliding Blackman window truncated at 6 kHz,
normalized and cube root compressed to reduce the dynamic range.
We apply PCA whitening to retain 99% of the training data variance,
yielding roughly 30–70% dimensionality reduction. A DBN is then
constructed by greedy layer-wise stacking of sparse RBMs trained
in an unsupervised way to model the previous hidden layer expecta-
tion (vl+1 ≡ E[hl|vl]) [17]. The whole network is finally finetuned
with respect to a supervised criterion (e.g. eq. 14) and the last layer
is then used as our input x(t) for the spectrogram frame at time t.

We evaluate our method on five datasets of varying complexity:
Piano-midi.de, Nottingham, MuseData and JSB chorales (see [6])
which are rendered from piano and orchestral instrument soundfonts,
and Poliner & Ellis [18] that comprises synthesized sounds and real
recordings. We use frame-level accuracy [10] for model evaluation.
Hyperparameters are selected by a random search [19] on predefined
intervals to optimize validation set accuracy; final performance is
reported on the test set.

Table 1 compares the performance of the I/O RNN-RBM to the
HMM baseline [16] and the RNN-RBM hybrid approach [6] on four
datasets. Contrarily to the product of experts of [6], our model is
jointly trained, which eliminates duplicate contributions to the en-
ergy function and the related increase in marginals temperature, and
provides much better performance on all datasets, approximately
halving the error rate in average over these datasets.

We now assess the robustness of our algorithm to different types
of noise: white noise, pink noise, masking noise and spectral dis-
tortion. In masking noise, parts of the signal of exponentially dis-
tributed length (µ = 0.4 s) are randomly destroyed [20]; spectral
distortion consists in Gaussian pitch shifts of amplitude σ [21]. The
first two types are simplest because a network can recover from
them by averaging neighboring spectrogram frames (e.g. Kalman
smoothing), whereas the last two time-coherent types require higher-
level musical understanding. We compare a bidirectional RNN [12]
adapted for frame-level transcription, a regular RNN with v → ĥ
connections (w = 2000) and the I/O RNN-NADE (w = 50,K =
10). Figure 2 illustrates the importance of temporal smoothing con-
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Fig. 2. Robustness to different types of noise of various RNN-based
models on the JSB chorales dataset.

SONIC [22] 39.6%
Note events + HMM [23] 46.6%
Linear SVM [18] 67.7%
DBN + SVM [16] 72.5%
BLSTM RNN [12] 75.2%
AdaBoost cascade [24] 75.2%
I/O-RNN-NADE 79.1%

Table 2. Frame-level accuracy of existing transcription methods on
the Poliner & Ellis dataset [18].

nections and the additional advantage provided by conditional dis-
tribution estimators. Beam search is responsible for a 0.5% to 18%
increase in accuracy over a greedy search (w = 1).

Figure 3 shows transcribed piano-rolls for various RNNs on
an excerpt of Bach’s chorale Es ist genug with 6 dB pink noise
(Fig. 3(a)). We observe that a bidirectional RNN is unable to per-
form temporal smoothing on its own (Fig. 3(b)), and that even a
post-processed version (Fig. 3(c)) can be improved by our global
search algorithm (Fig. 3(d)). Our best model offers an even more
musically plausible transcription (Fig. 3(e)). Finally, we compare
the transcription accuracy of common methods on the Poliner &
Ellis [18] dataset in Table 2, that highlights impressive performance.

5. CONCLUSIONS

We presented an input/output model for high-dimensional sequence
transduction in the context of polyphonic music transcription. Our
model can learn basic musical properties such as temporal continu-
ity, harmony and rhythm, and efficiently search for the most musi-
cally plausible transcriptions when the audio signal is partially de-
stroyed, distorted or temporarily inaudible. Conditional distribution
estimators are important in this context to accurately describe the
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Fig. 3. Demonstration of temporal smoothing on an excerpt of
Bach’s chorale Es ist genug (BWV 60.5) with 6 dB pink noise. Fig-
ure shows (a) the raw magnitude spectrogram, and transcriptions by
(b) a bidirectional RNN, (c) a bidirectional RNN with HMM post-
processing, (d) an RNN with v → ĥ connections (w = 75) and (e)
I/O-RNN-NADE (w = 20, K = 10). Predicted piano-rolls (black)
are interleaved with the ground-truth (white) for comparison.

density of multiple potential paths given the weakly discriminative
audio. This ability translates well to the transcription of “clean” sig-
nals where instruments may still be buried and notes occluded due to
interference, ambient noise or imperfect recording techniques. Our
algorithm approximately halves the error rate with respect to com-
peting methods on five polyphonic datasets based on frame-level ac-
curacy. Qualitative testing also suggests that a more musically rele-
vant metric would enhance the advantage of our model, since tran-
scription errors often constitute reasonable alternatives.
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