
MULTI-TARGET TRACKING APPLIED TO EVOLUTIONARY CLUSTERING

Maria Rosario Mestre? William J. Fitzgerald? †

? University of Cambridge, Signal Processing Laboratory, Cambridge, UK
† Featurespace, Broers Building, Hauser Forum, Cambridge, UK

? {mrm46, wjf1000}@cam.ac.uk, † William.Fitzgerald@featurespace.co.uk

ABSTRACT

We extend an established and robust method from multi-target
tracking showing how it can be used for evolutionary cluster-
ing. Our framework models the real-life dynamics of con-
sumer web data: the number of objects grows with time, and
not all objects update their state synchronously. Our proposed
algorithm tackles this problem by estimating the clusters se-
quentially using methods of multi-target tracking. We com-
pare this novel technique to clustering algorithms commonly
used in the literature and show how our method outperforms
the other methods in terms of accuracy, stability and speed
of adaptation to group dynamics. Our algorithm successfully
detects changepoints in the number of clusters.

Index Terms— Evolutionary clustering, consumer web
data, multi-target tracking, changepoint detection

1. INTRODUCTION

The large availability and storage of web data means that pat-
tern extraction algorithms are becoming increasingly attrac-
tive. In an evolutionary framework, data objects are observed
at multiple time points. This type of data is also referred to
as longitudinal, and is very common in e-commerce websites
[1, 2]. Our goal is to find a sequence of partitions over time.
The term ‘evolutionary’ refers to the fact that data objects fol-
low dynamic trends and we want to estimate these trends as
data objects arrive, i.e. online. By grouping similar objects to-
gether, we can identify the most significant group dynamics.
This in turn has many useful applications in consumer web
data, mobile communication networks, finance or biomedi-
cal signal processing. For example, clustering objects can
be used to segment a specific market or identify a group of
fraudulent transactions from a website. In this paper we use
an example from mobile communications.

We assume that we observe a sequence of snapshots or
samples of a system with a growing number of data objects.
Every time we take a snapshot of the system, we want to clus-
ter all objects seen so far. We assume that objects have differ-
ent run lengths, which is defined as the period of time since
the last state update. This type of setting is very common
in real life applications, where a customer of an e-commerce
website might not be actively using their profile being in a

‘dormant’ state. Our purpose is to incorporate the temporal
information of the objects so that the more active objects have
a higher contribution to the clustering solution. The desirable
properties of a clustering algorithm are: accuracy, stability
and fast adaptation to new trends.

In order to follow the trends accurately, we need to al-
low for the number of clusters and data objects to change in
time. To the best knowledge of the authors, there has been no
work that has attempted to fulfil all these requirements in a
unified framework. In the works by [3, 4], it is not stated how
to handle a variable number of clusters and data points. In
[5, 6], these situations are treated as special cases of the algo-
rithm. Furthermore, we also work on a different data setting.
In most work done in evolutionary clustering, the data arrives
in sequential batches [3, 4, 5]. In our case we also have se-
quential batches of data, but not all objects have the same run
length within a batch, and this needs to be accounted for.

We propose to use established methods from the multi-
target tracking literature for clustering longitudinal data. We
combine K-means and recursive filtering of the centres of the
clusters, which is the same as tracking multiple objects with a
nearest-neighbour data association step [7]. The main differ-
ence to any previous work done in multi-target tracking is in
the application. In a typical multi-target tracking problem, the
targets (in our case, the centroids of the clusters) move over
time in an enviroment with clutter, and the goal is to estimate
their position. We frame our problem differently in that our
targets move but our principal objective is to find the associa-
tion of objects to different targets. Our focus is in the hard la-
belling of the objects, which makes this a clustering problem.
The work in [7] is very similar to the algorithm presented here
but differs in the application. From the point of view of the
implementation, the number of objects being tracked is fixed
(i.e. clusters), and it does not assign all objects to a cluster.

There are two established variations of the sequential K-
means that can be found in the literature and that are appli-
cable to our specific framework [8]. In these algorithms, the
cluster centroids are estimated sequentially. We will explain
them in more detail in the next section. In addition to these se-
quential algorithms, we will compare our algorithm to the in-
cremental K-means which performs the clustering by batches
of data instead of sequentially [4]. In the rest of the paper, we
explain our algorithm and draw a comparison with other clus-

3173978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

tering algorithms using synthetic data. In order to test how
well a clustering algorithm fulfils the desired properties pre-
viously mentioned, we develop several performance metrics.
Finally, we also show results on a real dataset from mobile
communications.

2. STATE-SPACE MODEL

We observe snapshots Y1, Y2, . . . , YT of a system with grow-
ing number of objects, i.e. Yt = {yk} = {y1, . . . ,yNt}.
We use t = {1, . . . , T} to index snapshot sampling times,
and k = {1, . . . , Nt} to index objects in each snapshot. The
number of clusters Ct can vary between time steps. We as-
sume the number of clusters to be c for now. At every time
step, all objects observed so far are sampled using their last
state. Then, the objects are ordered by decreasing run length,
so that yk is more recent than yk−1. Even though run lengths
do not align with time steps, by a slight abuse of language we
will refer to each object yk as having been received at differ-
ent times. Note that our dataset is accumulative and carries
forward the inactive objects. This choice has been done so
that information contained in historical data is still used, as in
most evolutionary clustering algorithms. We cluster the data
objects in each snapshot sequentially.

The sequential clustering problem can be formulated as a
state-space problem,

yk = Hkxk + εk (1)
xk = xk−1 + θk (2)

where yk is the p × 1 observation vector, xk is the pc × 1
unobserved state vector, Hk is the p × pc observation model
matrix and εk, θk are zero-mean gaussian noise vectors with
covariance matrices Rk and Qk respectively. In our frame-
work, the state vector is built by stacking all centroids such
that xk = vec(xk,1, . . . ,xk,c), where xk,c is the c-th centroid
at time k with dimensions p×1. We construct the observation
model with the constraint that the observation yk can only be-
long to a single cluster. The observation model matrix Hk is
thus Hk = hk ⊗ Ipp where Ipp is the p × p identity matrix
and hk is a 1×c vector with 1 at position i(yk) and zero else-
where. The integer i(yk) is the index of the cluster to which
yk belongs. The symbol ⊗ is the Kronecker product.

We use the well-known Kalman filter to get an estimate x̂k

of the state vector [9]. Our model is nonlinear as the obser-
vation model depends on the observation, the Kalman filter
solution is therefore an approximation. The covariance ma-
trix Qk can be defined as Qk = cov(xk) = σ2

1Ipp ⊗ Icc.
For simplicity, we assume that centroids and coordinates are
independent from each other.

For the covariance matrixRk, we tried two different mod-
els where observations are independent from each other. In
the first model all observations have the same variance Rk =
σ2
2Ipp. In the second model, we used a varying estimate for

Rk such that Rk = σ2
2Ipp||yk − x̂k−1,i(yk)||. The intuition

behind this is that if an observation is far from its assigned
centroid, the confidence in the estimate is low. We found the
second model yielded better results, and thus the results re-
ported here are for this covariance matrix. We refer to the
final state estimate in a certain snapshot xNt

as xt for conve-
nience. We name our algorithm ‘KC’ in reference to ‘Kalman
clustering’. It has been implemented as a function that takes
parameters KC(Yt, xt−1,Ct), where xt−1 is the state estimate
at time t − 1. For t = 1, we use an initial estimate x0 which
is the mean over Y1.

As mentioned previously, we would like to compare our
approach to two better-known sequential K-means algorithms
(3) and (4) found in [8]. For each time k, we update the cen-
troids

x̂k,i(yk) = x̂k−1,i(yk) +
(yk −Hkx̂k−1)∑k′=k
k′=1 1i(yk)(i(yk′))

(3)

x̂k,i(yk) = x̂k−1,i(yk) + γ(yk −Hkx̂k−1) (4)

where γ is a constant between 0 and 1 and 1(x) is the indi-
cator function such that 1a(x) = 1 if x = a and 0 otherwise.
We will refer to clustering using update (3) as ‘sequential’ and
clustering using update (4) as ‘exponential’.

For the ‘KC’, ‘sequential’, ‘exponential’ and ‘incremen-
tal’ K-means algorithms, we compute the index of the cluster
assigned to each object by minimising the Euclidian distance,
like a nearest-neighbour association, i(yk) = argminc ||yk−
x̂k−1,c||. The only difference with the ‘incremental’ K-means
is that it assigns all objects and updates all centroids in a batch
instead of sequentially.

3. THE ALGORITHM

The estimation of the number of clusters is done sequentially
between snapshots. This part of the algorithm is common to
all clustering solutions mentioned above. We assume that the
number of clusters Ct does not change too abruptly, and we
therefore assume that (Ct − Ct−1) ∈ {−1, 0, 1} for every
time step. Our approach is very similar to a split-merge rule,
in which we recompute the clusterings for (Ct−1 + 1) and
(Ct−1 − 1) clusters, assign costs to each option, and keep the
clustering that yields the lowest cost. In order to make it less
computationally intensive, we only look for local variations
of the clustering, where a specific cluster might split or two
clusters might merge. In order to do this, we first pick the
clusters that seem the best candidates to split or merge. The
best candidate to split is the cluster cs that has the highest vari-
ance. Similarly, we pick the two clusters cm1 and cm2 that are
the best candidates to merge when the distance between their
centroids is the minimum value. The ‘split’ and ‘merge’ solu-
tions xs and xm are computed by running the Kalman filter on
the objects assigned to cs with 2 clusters and cm1, cm2 with
1 cluster respectively, leaving the other clusters unchanged.

3174

The centroids for the local split-merge clusters are initialised
by taking observations at random. We refer to these initial
estimates as x0,s and x0,m.

We then compute the cost for each clustering by using
the Aikaike Information Criterion (AIC), which is commonly
used to determine the number of clusters [10]. For a given
clustering Ct, the associated cost would be:

faic(Ct) =
1

Nt

Ct∑
c=1

∑
yk

i(yk)=c

‖yk − xt,c‖2 + λCt, (5)

where λ is used as a penalisation for a high number of clusters
and the first term is the goodness of fit of the clustering. We
also need to divide by the number of objects to be able to ac-
count for the growing number of objects in time. We show the
overview of the ‘KC’ algorithm in Algorithm 1. The only dif-
ference with the ‘sequential’, ‘exponential’ and ‘incremental’
versions is that they use a different function instead of KC.

Algorithm 1 Our Kalman clustering

1: initial estimate for x0

2: C0 ← 1
3: for all snapshots Yt where t ∈ {1, . . . , T} do
4: current solution: xt ← KC(Yt,xt−1, Ct−1)
5: find cs, cm1 and cm2

6: Ys ← {yk : i(yk) = cs}
7: {xs1,xs2} ← KC(Ys,x0,s, 2)
8: split solution: xs ← {xt\xt,cs ,xs1,xs2}
9: Ym ← {yk,yk′ : i(yk) = cm1, i(yk′) = cm2}

10: xm ← KC(Ym,x0,m, 1)
11: merge solution: xm ← {xt\{xt,cm1 ,xt,cm2},xm}
12: {xt, Ct} ← argminC∈{xt,xs,xm} faic(C)
13: end for

4. RESULTS

4.1. Synthetic data

We generated synthetic data with different dynamics to be
tested. The objects originated from varying number of clus-
ters modelled as a mixture of t-distributions. We used t-
distributions to emulate most real web datasets. Compared to
[4], we had more structural changes. We created a timeline
with 3 event times. The first and second events at t1 and t2
mark the period of activity of cluster 2, after which it be-
comes inactive. There is a changepoint whenever the number
of clusters changes. Event t2 is either the beginning of a split
or a merge, and thus a changepoint. The timeline in Figure
1 shows an example of a split scenario. We generated 25
scenarios with random splits and 25 scenarios with random
merges. Time t3, as well as the positions of the ‘splitting’ and
‘merging’ clusters were random. We worked on T = 1000

with an incremental rate of 10 new objects per time step, so
that at time T we have 10,000 objects. We used two different
‘ground truth’ labellings: one that ‘forgets’ about inactive
clusters and another one that does not. We tried both for each
algorithm and reported the best results. This is only needed to
compute the adjusted Rand index mentioned later, the other
performance metrics do not rely on the true labelling.

c1

c2

c3

c4

c5

400 800 1400 2000

800 800

1600 2400
2400

2400

2400

time

clusters

1t 2t 3t

Fig. 1: Timeline of the synthetic data showing a split of c4 into c3
and c5. The accumulated number of objects in each cluster is shown.

We compared the ‘sequential’ (3), ‘exponential’ (4) and
‘incremental’ K-means [4] to our solution in terms of accu-
racy, stability and speed of adaptation. Similarly to [4], we
used the adjusted Rand index which is a well-known mea-
sure for clustering accuracy [11]. For stability, we based our
metric on the oscillations no in the number of clusters, s =
1 − no

1000 . This metric gives the proportion of time when the
number of clusters was stable. Finally, we used a rule-based
automated check to determine whether the changepoint at t2
was successfully identified and to measure the reaction time,
i.e. how long it took to adapt to the changepoint. We do not
describe the series of rules used because of space constraints.

We set λ = 20 across all methods for comparison pur-
poses. The parameter γ in the ‘exponential’ algorithm affects
how fast the clustering responds to different dynamics. How-
ever there is a compromise between stability, accuracy and the
speed of adaptation to changes. A low γ yields a higher reac-
tion time but fewer oscillations in the number of clusters over
time. If the oscillations are too high, this makes the clustering
result difficult to interpret. We found an oscillation threshold
of 15% of the time to be acceptable. Therefore, we decided
to set γ = 0.67, which yielded a very high adjusted Rand in-
dex and more than 85% stability. The covariance parameters
σ1 and σ2 were selected so as to optimise the adjusted Rand
index. The best performance was consistently obtained for
[σ1 = 1, σ2 = 3]. An illustration of a scenario with a split
can be seen in Figure 2. The clustering was able to success-
fully identify the split between two groups of objects, since
they were assigned to different clusters.

We summarise the results in Table 1. Our algorithm ‘KC’
outperformed the others in terms of proportion of change-

3175

Algorithm Parameters Proportion changepoints
detected

Average adjusted
Rand index Stability Average reaction time

Sequential λ = 20 68% 0.74 >0.99 399
Incremental λ = 20 80% 0.75 >0.99 401
Exponential γ = 0.67, λ = 20 80% 0.71 0.88 361

KC σ1 = 1, σ2 = 3, λ = 20 86% 0.75 0.96 379

Table 1: Performance of the different algorithms on synthetic data over 50 runs. The best values have been highlighted.

Fig. 2: KC [σ1 = 1, σ2 = 3] before and after detection of the split
at t = 600 (left) and t = 800 (right) respectively.

points successfully detected. There is a general trade-off be-
tween stability of the solution and speed of adaptation, as has
already been pointed out in [4]. Both the incremental and se-
quential K-means had the highest reaction times, but also the
highest stability. At the other end of the spectrum, the ex-
ponential clustering achieved the best reaction times, but the
worst stability. Our solution struck the best compromise be-
tween stability and speed of adaptation having the second best
average reaction time.

4.2. Real data

The issue with real datasets is that the ground truth is not
known, but certain heuristics can be used to determine the ef-
fectiveness of the clustering. If there is a landmark or change-
point in the dataset, then a clustering algorithm should be able
to detect it. We use the same dataset as [4], however we ex-
tracted different features. The dataset comes from [12], it is
a study of mobile communications of one hundred students
and academic staff at MIT between the 20th September 2004
and the 20th March 2005. We used location features of 85
mobiles during that time period that we sampled 1000 times.
Each mobile kept a log of the cell tower ids it was receiving
signal from and these ids were used as approximate locations.
A new log was made whenever a mobile made a transition be-
tween neighbouring cell towers. We also used the run lengths
of each object, as people did not update their location syn-
chronously. We show here the number of clusters over the
time period as estimated by KC with [σ1 = 1, σ2 = 3, λ =
20]. No optimisation was done to choose the parameters mak-
ing overfitting unlikely. The number of clusters shows high
variability over the time period. The clustering algorithm

successfully identifies significant changepoints. The visible
peaks and landmarks in the time series all represent week-
ends and holidays where the mobility of people increased sig-
nificantly. Interestingly, the most significant changepoints are
Thanksgiving (25th November) and the 31st December shown
by stars.

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

18

20

time samples

N
um

be
r o

f c
lu

st
er

s

Variation in the number of clusters

25th November! 31st December!

Fig. 3: All the circles represent landmarks, the stars are the most
significant ones, the triangles are the start of winter vacation and
spring term.

5. CONCLUSIONS

In this paper, we propose to apply a well-known multi-target
tracking algorithm to a new evolutionary clustering problem
with automatic detection of the number of clusters. This is
the first time that this has been done to the best knowledge
of the authors. We also made a systematic comparison with
other well-known clustering algorithms in the 3 main desir-
able properties: accuracy, stability and speed of adaptation.
We showed that our algorithm found the best compromise be-
tween stability and reaction time. We could extend the pro-
posed solution using more sophisticated covariance structures
in the Kalman filtering. Additionally, our algorithm could be
formulated in a fully probabilistic framework. We leave this
for future work.

6. ACKNOWLEDGEMENTS

We would like to thank Featurespace (who own all rights) for
their collaboration and financial support for this work. We
would like to thank Amelia Waddington for her insightful
comments.

3176

7. REFERENCES

[1] Y. Yang and B. Padmanabhan, “Segmenting customer
transactions using a pattern-based clustering approach,”
in Data Mining, 2003. ICDM 2003. Third IEEE Inter-
national Conference on. IEEE, 2003, pp. 411–418.

[2] Y. Yang and B. Padmanabhan, “Ghic: a hierarchi-
cal pattern-based clustering algorithm for grouping web
transactions,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 17, no. 9, pp. 1300–1304, 2005.

[3] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolu-
tionary clustering,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2006, pp. 554–560.

[4] K.S. Xu, M. Kliger, and AO Hero, “Evolutionary spec-
tral clustering with adaptive forgetting factor,” in Acous-
tics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE, 2010, pp. 2174–
2177.

[5] Y. Chi, X. Song, D. Zhou, K. Hino, and B.L. Tseng,
“Evolutionary spectral clustering by incorporating tem-
poral smoothness,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2007, pp. 153–162.

[6] K.S. Xu, M. Kliger, and A.O. Hero III, “Adaptive evo-
lutionary clustering,” Arxiv preprint arXiv:1104.1990,
2011.

[7] R.G. Sea, “An efficient suboptimal decision procedure
for associating sensor data with stored tracks in real-
time surveillance systems,” in Decision and Control,
1971 IEEE Conference on. IEEE, 1971, vol. 10, pp. 33–
37.

[8] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classifi-
cation and Scene Analysis 2nd ed., 1995.

[9] R.E. Kalman et al., “A new approach to linear filtering
and prediction problems,” Journal of basic Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

[10] C.D. Manning, P. Raghavan, and H. Schütze, Introduc-
tion to information retrieval, vol. 1, Cambridge Univer-
sity Press Cambridge, 2008.

[11] L. Hubert and P. Arabie, “Comparing partitions,” Jour-
nal of classification, vol. 2, no. 1, pp. 193–218, 1985.

[12] N. Eagle, A.S. Pentland, and D. Lazer, “Inferring friend-
ship network structure by using mobile phone data,”
Proceedings of the National Academy of Sciences, vol.
106, no. 36, pp. 15274–15278, 2009.

3177

