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Asmussens Allé B305, 2800 Kgs. Lyngby, Denmark
{bjje,rast,janla,lkai}@dtu.dk

ABSTRACT

A fundamental and general representation of audio and mu-
sic which integrates multi-modal data sources is important for
both application and basic research purposes. In this paper
we address this challenge by proposing a multi-modal ver-
sion of the Latent Dirichlet Allocation model which provides
a joint latent representation. We evaluate this representation
on the Million Song Dataset by integrating three fundamen-
tally different modalities, namely tags, lyrics, and audio fea-
tures. We show how the resulting representation is aligned
with common ’cognitive’ variables such as tags, and provide
some evidence for the common assumption that genres form
an acceptable categorization when evaluating latent represen-
tations of music. We furthermore quantify the model by its
predictive performance in terms of genre and style, providing
benchmark results for the Million Song Dataset.

Index Terms— Audio representation, multi-modal LDA,
Million Song Dataset, genre classification.

1. INTRODUCTION

Music representation and information retrieval are issues of
great theoretical and practical importance. The theoretical
interest relates in part to the close interplay between audio,
human cognition and sociality, leading to heterogenous and
highly multi-modal representations in music. The practical
importance, on the other hand, is evident as current music
business models suffer from the lack of efficient and user
friendly navigation tools. We are interested in representations
that directly support interactivity, thus representations based
on latent variables that are well-aligned with cognitively (se-
mantic) relevant variables [1]. User generated tags can be
seen as such ’cognitive variables’ since they represent deci-
sions that express reflections on music content and context.

This work was supported in part by the Danish Council for Strategic Re-
search of the Danish Agency for Science Technology and Innovation under
the CoSound project, case number 11-115328. Bob L. Sturm, Aalborg Unin-
versity Copenhagen is acknowledged for suggestion of relevant references in
music interpretation.

Clearly, such tags are often extremely heterogenous, high-
dimensional, and idiosyncratic as they may relate to any as-
pect of music use and understanding.

Moving towards broadly applicable and cognitively rele-
vant representations of music data is clearly contingent on the
ability to handle multi-modality. This is reflected in current
music information research that use a large variety of repre-
sentations and models, ranging from support vector machine
(SVM) genre classifiers [2]; custom latent variable models
models for tagging [3]; similarity based methods for recom-
mendation based on Gaussian Mixture models [4]; and latent
variable models for hybrid recommendation [5]. A significant
step in the direction of flexible multi-modal representations
was taken in the work of Law et al. [6] based on the proba-
bilistic framework of Latent Dirichlet Allocation (LDA) topic
modeling. Their topic model representation of tags allows
capturing rich cognitive semantics as users are able to tag
freely without being constrained by a fixed vocabulary. How-
ever, with a strong focus on automatic tagging Law et al. re-
frained from developing a universal representation - symmet-
ric with respect to all modalities. A more symmetric represen-
tation is pursued in recent work by Weston et al. [7]; however,
without a formal statistical framework it offers less flexibility,
e.g., in relation to handling missing features or modalities.
This is often a challenge encountered in real world music ap-
plications.

In this work we pursue a multi-modal view towards a
unifying representation, focusing on latent representations
informed symmetrically by all modalities based on a multi-
modal version of the Latent Dirichlet Allocation model. In
order to quantify the approach, we evaluate the model and
representation in a large-scale setting using the million song
dataset (MSD) [8], and consider a number of models trained
on combinations of the three basic modalities: user tags (top-
down view), lyrics (meta-data view) and content based audio
features (bottom-up view). First, we show that the latent
representation obtained by considering the audio and lyrics
modalities is well aligned—in an unsupervised manner - with
’cognitive’ variables by analyzing the mutual information
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between the user generated tags and the representation itself.
Secondly, with knowledge obtained in the first step, we eval-
uate auxiliary predictive tasks to demonstrate the predictive
alignment of the latent representation with well-known hu-
man categories and metadata information. In particular we
consider genre and styles provided by [9], none of which is
used to learn the latent semantics themselves. This leads to
benchmark results on the MSD and provides insight into the
nature of generative genre and style classifiers.

Our work is related to a rich body of studies in music
modeling, and multi-modal integration. In terms of non-
probabilistic approaches this includes the already mentioned
work of Weston et al. [7]. McFee et al. [10] showed how
hypergraphs (see also [11]) can be used to combine multiple
modalities with the possibilities to learn the importance of
each modality for a particular task. Recently McVicar et al.
[12] applied multi-way CCA to analyze emotional aspects of
music based on the MSD.

In the topic modelling domain, Arenas-Garcı́a et al. [13]
proposed multi-modal PLSA as a way to integrate multiple
descriptors of similarity such as genre and low-level audio
features. Yoshii et al. [5, 14] suggested a similar approach for
hybrid music recommendation integrating subject taste and
timbre features. In [15], standard LDA was applied with au-
dio words for the task of obtaining low-dimensional features
(topic distributions) applied in a discriminative SVM classi-
fier. For the particular task of genre classification et al. [16]
applied the pLSA model as a generative genre classifier. Our
work is a generalization and extension of these previous ideas
and contributions based on the multi-modal LDA, multiple
audio features, audio words and a generative classification
view.

2. DATA & REPRESENTATION

The recently published million song dataset (MSD) [8] has
highlighted some of the challenges in modern music informa-
tion retrieval; and made it possible to evaluate top-down and
bottom-up integration of data sources on a large scale. Hence,
we naturally use the MSD and associated data sets to evalu-
ate the merits of our approach. In defining the latent seman-
tic representation, we integrate the following modalities/data
sources.

The tags, or top-down features, are human annotations
from last.fm often conveying information about genre and
year of release. Since users have consciously annotated the
music in an open vocabulary, such tags are considered an ex-
pressed view of the users cognitive representation. The meta-
data level, i.e., the lyrics, is of course nonexistent for for ma-
jority of certain genres, and in other cases simply missing
for individual songs which is not a problem for the proposed
model. The lyrics are represented in a bag-of-words style,
i.e., no information about the order in which the terms occurs
is included. The content based or bottom up features are de-

Fig. 1: Graphical model of the multi-modal LDA model

rived from the audio itself. We rely on the Echonest feature
extraction1 already available in for the MSD, namely timbre,
chroma, loudness, and tempo. These are orginally derived in
event related segments, but we follow previous work [17] by
beat aligning all features obtaining an meaningful alignment
with music related aspects.

In order to allow for practical and efficient indexing and
representation, we abandon the classic representation of using
for example a Gaussian mixture model for representing each
song in its respective feature space. Instead we turn to the so-
called audio word approach (see e.g. [18, 19, 3, 17]) where
each song is represented by a vector of counts of (finite) num-
ber of audio words (feature vector). We obtain these audio
words by running a randomly initiated K-means algorithm on
a 5% random subset of the MSD for timbre, chroma, loudness
and tempo with 1024, 1024, 32, and 32 clusters, respectively.
All beat segments in a all songs are then quantized into these
audio words and the resulting counts, representing the four
different audio features, are concatenated to yield the audio
modality.

3. MULTI-MODAL MODEL

In order to model the heterogeneous modalities outline above,
we turn to the framework of topic modeling. We propose to
use a multi-modal modification of the standard LDA to repre-
sent the latent representation in a symmetric way relevant to
many music applications. The multi-modal LDA, mmLDA,
[20] is a straight forward extension of standard LDA topic
model [21], as shown in Fig. 1. The model and notation is
easily understood by the way it generates a new song by the
different modalities, thus the following generative process de-
fines the model:
• For each topic z ∈ [1;T ] in each modality m ∈ [1;M ]

Draw φ
(m)
z ∼ Dirichlet(β(m)).

This is the parameters of the zth topic’s distribution over vo-
cabulary [1;V (m)] of modality m.

• For each song s ∈ [1;S]

– Draw θs ∼ Dirichlet(α).
This is the parameters of the sth song’s distribution
over topics [1;T ].

– For each modality m ∈ [1;M ]

∗ For each word w ∈ [1;Nsm]

· Draw a specific topic z(m) ∼ Categorical(θs)

· Draw a word w(m) ∼ Categorical(φ(m)

z(m))

1http://the.echonest.com
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Fig. 2: Normalized average mutual information (avgNMI) be-
tween the latent representation defined by audio and lyrics for
T = 128 topics and the 200 top-ranked tags. avgNMI is com-
puted on the test set in each fold. The popularity of each tag
is indicated in parenthesis.

A main characteristic of mmLDA is the common topic pro-
portions for all M modalities in each song, s, and separate
word-topic distributions p(w(m)|z) for each modality, where
z denotes a particular topic. Thus, each modality has its own
definition of what a topic is in terms of its own vocabulary.

Model inference is performed using a collapsed Gibbs
sampler [22] similar to the standard LDA. The Gibbs sam-
pler is run for a limited number of complete sweeps through
the training songs, and the model state with the highest model
evidence within the last 50 iterations is regarded as the MAP
estimate. From this MAP sample, point estimates of the topic-
song distribution, p̂(z|s), and the modality, m, specific word-
topic distribution, p̂(w(m)|z), can be computed based on the
expectations of the corresponding Dirichlet distributions.

Evaluation of model performance on a unknown test song,
s∗, is performed using the procedure of fold-in [23, 24] by
computing the point estimate of the topic distribution, p̂(z|s∗)
for the new song, by keeping the all the word-topic counts
fixed during a number of new Gibbs sweeps. Testing on a
modality, not included in the training phase, requires a point
estimate of the word-topic distribution, p(w(m∗)|z), of the
held out modality, m∗, of the training data. This is obtained
by fixing the song-topic counts while updating the word-topic
counts for that specific modality. This is similar to the fold-in
procedure used for test songs.

4. EXPERIMENTAL RESULTS & DISCUSSION

4.1. Alignment

The first aim is to evaluate the latent representation’s align-
ment with a human ’cognitive’ variable, which we previously
argued could be the open vocabulary tags. We do this by in-
cluding only the lower level modalities of audio and lyrics
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(a) Genre
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(b) Style

Fig. 3: Classification accuracy for T ∈ {32, 128, 512}. Dark
blue: Combined model; Light Blue: Tags; Green: Lyrics;
Orange: Audio; Red: Audio+Lyrics.

when estimating the model. Then the normalized mutual in-
formation between a single tag and the latent representations,
i.e., the topics, is calculated for all the tags.

Thus for a single tag, wi
(tag) we can compute the mutual

information between the tag and the topic distribution for a
specific song, s as:

MI
(
wi

(tag), z|s
)
= (1)

KL
(
p̂
(
wi

(tag), z|s
)
||p̂
(
wi

(tag)|s
)
p̂ (z|s)

)
,

where KL(·) denotes the Kullback-Leibler divergence. We
normalize the MI to be in [0; 1], i.e,

NMI
(
wi

(tag), z|s
)
= 2

MI
(
wi

(tag), z|s
)

H
(
wi

(tag)|s
)
+H (z|s)

,

where H(·) denotes the entropy. Finally, we compute the
average over all songs to arrive at the final measure of
alignment for a specific tag, given by avgNMI(wi

(tag)) =
1
S

∑
s NMI

(
wi

(tag), z|s
)
.

Fig. 2 shows a sorted list of tags, where tags with high
alignment with the latent representation have higher average
NMI (avgNMI). It is notable that the combination of the au-
dio and lyrics modality, in defining the latent representation,
seems to align well with genre-like and style-like tags. On the
contrary, emotional and period tags are relatively less aligned
with the representation. Also note that the alignment is not
simply a matter of the tag being the most popular as can
be seen from Fig. 2. Less popular tags are ranked higher
by avgNMI than very popular tags, suggesting that some are
more specialized in terms of the latent representation than
others.

The result gives merit to the idea of using genre and styles
as proxy for evaluating latent representation in comparison
with other open vocabulary tags, since we - from lower level
features, such as audio features and lyrics - can find latent
representations which align well with high-level, ’cognitive’
aspects in an unsupervised way. This is in line with many
studies in music informatics on western music (see e.g. [25,
26, 27]) which indicate coherence between genre and tag cat-
egories and cognitive understanding of music structure. In
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Fig. 4: Dark blue: Combined model, Light Blue: Tags, Green: Lyrics, Orange: Audio, Red: Audio+Lyrics, genre, T = 128.
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Fig. 5: Confusion matrices for genre and 128 topics. The color level indicates the classification accuracy.

summary, the ranking of tag alignment using our modeling
approach on the MSD provides some evidence in favor of
such coherence.

4.2. Prediction

Given the evidence presented for genre and style being the
relatively most appropriate human categories, our second aim
is to evaluate the predictive performance of the multi-modal
model for genre and style, and we turn to the recently pub-
lished extension of the MSD [9] for reference test/train splits
and genre and style labels. In particular, we use the balanced
splits defined in [9].

For the genre case, this results in 2000 labeled examples
per genre and 15 genres, thus resulting in 30, 000 songs. We
estimate the predictive genre performance by 10-fold cross-
validation. Fig. 4 shows the per-label classification accuracy
(perfect classification equals 1). The total genre classification
performance is illustrated in Fig. 3a. The corresponding re-
sult for style classification, based on a total of 50, 000 labeled
examples, is shown in Fig. 3b. Both results are generated us-
ing T = 128 topics, 2000 Gibbs sweeps and predicting using
the MAP estimate from the Gibbs sampler.

We first note that the combination of all modalities per-
forms the best and significantly better than random as seen
from Fig. 3, which is encouraging, and support the multi-
modal approach. It is furthermore noted that the tag modality
is able to perform very well. This indicates that despite the
possibly noisy user expressed view, the model is able to find
structure in line with the taxonomy defined in the reference
labels of [9]. More interesting is perhaps the audio and lyric
modalities and the combination of the two. This shows that
lyrics performs the worst for genre, possibly due to the miss-
ing data in some tracks, while the combination is significantly

better. For style there is no significant difference between au-
dio and lyrics.

Looking at the genre specific performance in Fig. 4 we
find a significant difference between the modalities. It ap-
pears that the importance of the modalities is partly in line
with the fundamentally different characteristics of each spe-
cific genre. For example ’latin’ is driven by very characteris-
tic lyrics. Further insight can be obtained by considering the
confusion matrices which show some systematic pattern of er-
ror in the individual modalities, whereas the combined model
shows a distinct diagonal structure, highlighting the benefits
of multi-modal integration.

5. CONCLUSION

In this paper, we proposed the multi-way LDA as a flexible
model for analyzing and modeling multi-modal and hetero-
geneous music data in a large scale setting. Based on the
analysis of tags and latent representation, we provided evi-
dence for the common assumption that genre may be an ac-
ceptable proxy for cognitive categorization of (western) mu-
sic. Finally, we demonstrated and analyzed the predictive per-
formance of the generative model providing benchmark result
for the Million Song Dataset, and a genre dependent perfor-
mance was observed. In our current research, we are looking
at purely supervised topic models trained for, e.g. genre pre-
diction. In order to address truly multi-modal and multi-task
scenarios such as [7], we are currently pursuing an extended
probabilistic framework that include correlated topic models
[28], multi-task models [29], and non-parametric priors [30].
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