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ABSTRACT

Non-negative data arise in a variety of important signal processing
domains, such as power spectra of signals, pixels in images, and
count data. This paper introduces a novel non-negative dynamical
system (NDS) for sequences of such data, and describes its applica-
tion to modeling speech and audio power spectra. The NDS model
can be interpreted both as an adaptation of linear dynamical systems
(LDS) to non-negative data, and as an extension of non-negative ma-
trix factorization (NMF) to support Markovian dynamics. Learning
and inference algorithms were derived and experiments on speech
enhancement were conducted by training sparse non-negative dy-
namical systems on speech data and adapting a noise model to the
unknown noise condition. Results show that the model can capture
the dynamics of speech in a useful way.

Index Terms— non-negative dynamical system (NDS), linear
dynamical system (LDS), multiplicative innovations, non-negative
matrix factorization (NMF), source separation.

1. INTRODUCTION

Non-negative sequences arise in a variety of important signal pro-
cessing domains, such as power spectra of signals, pixels in images,
and sequences of count data. This paper introduces a novel dynam-
ical system for non-negative data, and describes its application to
speech and audio modeling.

This work bridges two active fields, dynamical systems and non-
negative matrix factorization (NMF). Dynamical systems are a long-
standing area of research with applications in many scientific fields.
A large body of literature is devoted to the case of linear dynamical
systems (LDS), which describe an observed sequence v, € RY,
indexed by n € [1, ..., N], via latent variables h,, € RX, according
to the equations:

hn = Ahn-1 + &n, (D
v = Whn + €n, 2)

where A and W are matrices of dimensions K x K and I' x K,
respectively, and &,, and ¢,, are independent, additive, and typically
Gaussian random variables. Eq. (1) describes the dynamics of the
state variable h,, and Eq. (2) describes the observation model. A, W,
& and e, are referred to as state-transition matrix, dictionary, state
innovation and data innovation, respectively. The LDS model does
not naturally apply to the case where h,, and v,, are non-negative.
Besides, NMF is a more recent research area that has attracted
a lot of attention in signal processing and machine learning com-
munities since the publication of the seminal paper [1]. In the gen-
eral case, NMF is the problem of finding an approximation of the
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form V ~ WH where V and H are non-negative matrices. This
approximation is generally obtained by minimizing a cost function
D(V|W H) that measures the dissimilarity between V' and W H.
In some settings, the columns of V' form a sequence v ...vn with
evolving dynamics, in the sense of statistical dependencies between
elements in the sequence, that standard forms of NMF will fail to
capture. Our work brings probabilistic dynamics to NMF, compara-
ble to that of the traditional LDS.

The discrete-state Hidden Markov Model (HMM) is another dy-
namical system that has been commonly used to handle dynamics of
speech, most famously in automatic speech recognition [2], but also
in speech synthesis [3] as well as in speech separation [4]. In this set-
ting, the speech features are usually taken to be cepstral coefficients
or other log-spectrum-based features. However, HMMs lead to com-
binatorial complexity due to the discrete state-space, especially in
the co-occurrence of several speakers. Because of the discreteness
of the state space and the state-conditional independence of adjacent
frames, HMMs also famously do not easily handle gain adaptation
and continuity over time. In contrast, standard NMF solves both
the computational cost (of linear complexity per iteration) and gain
adaptation problems (through H), but it does not handle continuous
dynamics. By bringing continuous dynamics to an NMF-like formu-
lation, we hope to obtain the best of both worlds.

The proposed non-negative dynamical system (NDS) is given by

hn = Ahnfl o §n, (3)
Un = Why 0 €n, (C))

where all variables are non-negative with the same dimensions as
above, and ‘o’ denotes element-wise multiplication. The multi-
plicative innovations &,, and €,, are non-negative random variables.
The observation model (4) operates similarly to standard NMF,
whereas the latent dynamics (3) capture statistical dependency be-
tween frames similarly to LDS.

In Section 2, we complete the presentation of the proposed
model (3)-(4) with additional statistical assumptions. In Section 3,
we present a majorization-minimization (MM) algorithm for maxi-
mum a posteriori (MAP) estimation of W, H, A given V. Section 4
discusses how the proposed NDS applies to the modeling of speech
spectra and reports speech enhancement results.

2. MODEL

2.1. Statistical assumptions

We assume the state and data innovations to be independent and
identically distributed (i.i.d), spatially independent and Gamma
distributed, such that p(&1,...,én) = T[], ,, G(§enlak, Br) and
pler,...,en) =11;, Glegnlvy, d5), where a, Bi, vy and &5 are
positive scalars and G refers to the Gamma distribution, with prob-
ability density function (pdf) G(z|a, 8) = B%/T'(a) e " It
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follows that v,, and h,, are conditionally Gamma distributed, such
that

p(hn|Ahp—1) HG hkn‘akyﬂk/zam n-1)s (5

p(vn|Why,) = HG(vfn|yf,5f/wakhkn). (6)
f k

The former holds for n > 1 only and we assume independent scale-
invariant Jeffreys prior for n = 1, i.e., p(hx1) < 1/hg1. The expec-
tation of the state variables and data under the model are

il Zam Jn-1)» (7)

f Z Wikhkn. ®

(hkn|Ahn 1
E (vfn|Whn)

For simplicity, we will assume vy = §; = 4, so that E(V) =
W H, which is a natural assumption underlying most NMF settings
(see for example [5]). Under this assumption, the negative log-
likelihood — log p(V|W H) is essentially the Itakura-Saito (IS) di-
vergence from V' to W H, as explained in [6]. The expression of
p(hn|Ahn_1) reveals a scale ambiguity between i and {ax;};,
which we fix by setting 8 = au, implying that E (hy|Ahn—1) =
Ahp_1.

The multiplicative and non-negative state and data innovations
preserve the non-negativity in the generative model. Additive real-
valued Gaussian innovations, as used in LDS, would fail to do so.
Additive non-negative innovations would ensure non-negativity, but
would only allow monotonically increasing values. In contrast, for
multiplicative innovations that can take values both lower and greater
than one, the coefficients of v,, and h,, are allowed to increase and
decrease.

2.2. Related work

To the best of our knowledge there is no prior work about the NDS
(3)-(4) proposed in this paper. There is some literature on non-
negative dynamical systems, where the state-space matrices, state
and observation vectors are assumed non-negative. However, to the
best of our knowledge, only non-negative additive perturbations have
been considered, see, e.g., [7, 8]. Furthermore most of the literature
we found on the topic is devoted to the theoretical properties of these
systems (stability, observability) rather than inference in or applica-
tion of these models. The closest to our model is perhaps [9], which
studies the conditions for existence, uniqueness and stability of the
system defined by Eq. (3) alone, but does not provide algorithms nor
procedures for inference.

A special case of the NDS (3)-(4) has been addressed in the
NMF literature. In [6, 10], algorithms were derived for the special
case A = Ix, where I denotes the identity matrix of dimension
K, and 6 = 1 (multiplicative exponentially-distributed observation
innovation). In these papers, the state innovation was arbitrarily as-
sumed either Gamma or inverse-Gamma with mode obtained at 1,
i.e., the mode of p(hin|hin—1)) is obtained at hxp = hin—1)-
The resulting method, coined smooth Itakura-Saito NMF, allows to
regularize the individual rows of H temporally, assuming mutual
independence of the rows. The proposed model goes an important
step forward by lifting the mutual independence assumption, which
is generally not a realistic one. Indeed, the activation of a pattern at
frame n is also likely to correlate (or anti-correlate) with the activa-
tion of other patterns at frame n—1. This is what the proposed model

achieves through the introduction of the state-transition matrix A in
Eq. (3).

A preliminary attempt at introducing dynamics into NMF has
been made by Smaragdis et al., for speech denoising [11] and sound
classification [12]. They compute standard NMF decompositions
from spectral training data describing each sound class (e.g., in the
denoising setting, speech and noise) and compute the average tempo-
ral dynamics of the returned matrices H for each class a posteriori.
Test sounds are then decomposed onto the learned spectral patterns,
using a regularization step that employs the precomputed temporal
statistics of each class. In particular [12] employs an ad-hoc forward-
backward smoothing of the activations. The work presented in this
paper pursues a more formal approach, and proposes a well-posed
statistical model for non-negative data along with principled algo-
rithms for inference.

3. MAXIMUM A POSTERIORI ESTIMATION

We have derived a majorization-minimization (MM) algorithm for
MAP estimation of the parameters W, A, H given user-defined val-
ues of the remaining parameters § and {ay}x. In the following,
we only present the main steps of the procedure to meet the space
limitations constraints. The MAP objective function is defined by
C(W,H,A) = —logp(VIWH) — logp(H|A). Our MM algo-
rithm is a block-coordinate descent algorithm that updates W, H
and A individually and conditionally upon the current values of the
other parameters. The algorithm alternates between forming an up-
per bound of the objective function at the current parameter settings,
and optimizing parameters to minimize this bound.

Let W, H and A denote the parameter values at the current iter-
ation and consider for example the update of W. Denote for example
F(W) = C(W, H, A) the function to be minimized w.r.t W. The
first step of the MM algorithm consists in building an upper bound
G(W, W) of F(W) which is tight for W = W, ie., F(W) <
G(W, W) for all W and G(W, W) = F(W). The second step
consists in minimizing the bound w.r.t W, producing a valid descent
algorithm. Indeed, at iteration ¢ + 1, it holds by construction that
F(W(“‘l)) < G(W(i“), W(i)) < G(W(i), W(i)) — F(W(i)).
The same principle applies to the updates of H and A.

The upper bounds can be derived using standard inequalities,
namely Jensen’s inequality for the convex parts of the objective func-
tions and the tangent inequality for the concave parts. Using this
strategy, the updates of W and A are multiplicative and given by

Sy henvpn 52,
271:7:1 hkn/ﬁfn + )‘7

ki = Qg Bi Zn 2 Mjn—1) hlm/glm7 (10)
J J
@ Yn g hjn-1)/Gin

(C)]

Wk = Wk

where 'L~)fn = Zk ’lf)fkhkn, gkn = Z]. dkjhj(nfl) and )\ is a
constant that prevents degenerate solutions such that |[W] — oo
and ||H|| — 0. Owing to the Markovian structure of H, adjacent
columns are coupled in the optimization. We have employed a left-
to-right block-coordinate descent approach that updates &, at itera-
tion ¢ conditionally on h( 9 ’, and hs+11), for 1 < n < N. With this
approach, updates of hkn are available in closed form and merely
involve rooting a polynomial of order 2, such that

G2, — APknThn — Qin

hin =

; an
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where pr, = 63, =5 + 370 oy =

Ofn IG5 (1)
7 Ve ajph; ~
Tkn = _hin 6wafkﬁ%+2@w ’ and vf” =
3 fno T G
2ok Wikhkns Grintry =205 akjhin, Grn =22 arihjn-1).

+gﬁT"n,an=1—Oék,

4. APPLICATION TO SPEECH

4.1. Spectral modeling of speech with NDS

When § = 1, such that &, is exponentially distributed, Eq. (4) can
be related to a generative model of the power spectrogram in the
following Gaussian composite model (GCM). Let z¢,, denote the
complex-valued short-time Fourier transform (STFT) of some time
domain audio signal, where f is a frequency bin index and n in-
dexes time frames. The GCM is defined by xs, = >, ¢frn and
¢kn ~ Ne(0,wskhin), where Ne(0, \) refers to the circular com-
plex Gaussian distribution with zero mean. The latent components
{¢frn} can trivially be marginalized from the generative model,
yielding & sr, ~ N(0, >, wsrhin). It follows that the power spec-
trogram v, = |z | of x ¢, is exponentially distributed with mean
>k Wrkhen, and can thus be written as Eq. (4) with 6 = 1. Note
that, when necessary, minimum mean squares estimate (MMSE) of
the components can be obtained by Wiener filtering and given by

Wrkhkn
—_—Tfn.
Zj wjhyn

The GCM has found successful applications in audio source sep-
aration and music transcription [6, 13, 14, 15, 16], and generalizes
earlier two-component models used in spectral-based audio denois-
ing, e.g., [17]. In contrast with Gaussian mixture models (GMM:s)
or HMMs, which are prevalent in speech log-spectral modeling and
where each data frame is assumed to be in one among many possible
states each characterized by a given covariance, the GCM assumes
that each data frame is a sum of zero-mean Gaussian-distributed
components. In this paper the GCM is used as an observation pro-
cess for the NDS model.

12)

Ciln =

4.2. Speech enhancement with NDS

We consider a speech enhancement scenario where the time-domain
data x+ is a clean speech signal s; corrupted by additive noise by,
such that

T = S¢ + bt, (13)

and we wish to produce a speech estimate §; of s;. Given a trained
NDS model of speech (W™ A" representative of the unseen
source s, and given the corrupted data x, we estimate the non-
negative decomposition

V erainH + WnoiseHnoise (14)

of the power spectrogram V of the noisy observation z,
where W' "H represents the speech spectrogram estimate and
TWmoise [noise the noise spectrogram estimate. We then reconstruct
the time-domain source estimate § by MMSE estimation, which
amounts to Wiener filtering in our model. That is, we take the in-
verse STFT of

. erainH
= - - - X 15
S W/ train Ff 4}/ noise Fynoise o4, ( )

where the fraction bar is here elementwise.
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Fig. 1. Training NDS on female speech (frame length: 512).

In our approach, we assume the source and noise STFTs to fol-
low a GCM, such that s, ~ Ne(0,3, wfi"hkn) and by, ~
Ne(0,32, wipehjose). H follows the dynamics of Eq. (3) with
transition matrix A™". We recall that W™, A"™" are fixed vari-
ables, learned in a training phase. The matrices W™ and H™"® are
here assumed unknown and with no particular structure, and learned
from the data. With these assumptions, the decomposition (14)
shall be obtained by minimizing the divergence Drs(V|W'"™ " H +
Wrolse [rnoise) penalized by the dynamical term — log p(H|A™™),
w.rt H, W™ and H™*. This can be achieved with a MM al-
gorithm using minor modifications of the derivations presented in
Section 3. Besides the use of the IS divergence and the dynamical
penalty term, the proposed procedure resembles the semi-supervised
NMF setting described in [18].

4.3. Enhancement results

The sampling rate was 16 kHz. Time-frequency analysis was per-
formed using frame lengths of 512, 640, 800 and 960 samples, us-
ing for each length a 50% overlap and a sine window for analy-
sis and re-synthesis. For each window length, NDS models were
trained separately for male and female speech, each on 1000 utter-
ances (about 50 minutes) from the TIMIT training set. The number
of bases was set to K = 1000 and the Gamma distribution param-
eter to a, = o = 0.01. We show in Fig. 1 examples of W and A
trained on female speech with a frame length of 512. The low setting
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Fig. 2. Speech enhancement results.

of « strongly encourages sparsity in H, thus encouraging a holistic
representation of the spectrum, and a sparse transition matrix. How-
ever, sparsity can lead to jitter in the estimated signals, a potential
trade-off that will need to be investigated in future work.

We evaluated the enhancement algorithm described above on
mixtures of 10 speech files by different speakers (5 male and 5 fe-
male) from the TIMIT test set with 15 environmental texture sounds
from [19] at 3 different input signal-to-noise ratios (SNR), for a to-
tal of 450 mixtures. The training and test sets had disjoint sets of
speakers. The texture sounds include a wide variety of environmen-
tal sounds such as fire, bees, water stream, helicopter, applause, bab-
ble noise, shaking paper, etc. The speech test files were 1.8 sto 4.5 s
long, and were added in the middle of the 7 s long environmental
sounds. The number of noise bases was set to K"*¢ = 2. For each
mixture, we assumed the gender known and used the NDS speech
model for that gender.

For comparison, we also show results for the state-of-the-art
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Fig. 3. Signal to distortion ratios for reconstructed speech with NDS
(frame length 960, corresponding to 60 ms) and with OMLSA, and
for the noisy speech (used as a baseline).

algorithm combining Optimally-Modified Log Spectral Amplitude
Estimator and Improved Minima Controlled Recursive Averaging
[20, 21], denoted as OMLSA. To illustrate the behavior of the al-
gorithms, we show in Fig. 2 the spectrogram of a mixture of speech
by a female speaker and a helicopter sound at 10 dB SNR, and the
output of OMLSA and NDS on that mixture. NDS is able to sup-
press the non-stationary helicopter noise, while OMLSA fails to do
so. The outputs of the algorithms were also quantitatively evaluated
using the bss_eval toolbox [22], treating our denoising problem
as a source separation problem where s is the target source and b is
the interfering source, and the perception of speech quality (PESQ)
measure [23].

The bss_eval results are given in terms of signal-to-distortion
ratio (SDR) and shown in Fig. 3. The proposed NDS algorithm
with 60 ms windows significantly outperforms OMLSA for all in-
put SNRs. The results for other frame lengths were similar in terms
of SDR. When measured by PESQ, in contrast, the scores generally
increased with window size, but yielded no significant improvement
compared to OMLSA for the window sizes investigated. In informal
listening tests, the NDS model was very good at removing a wide
range of non-stationary noises, but suffered from a tendency to leave
behind residual speech-like sounds. In particular, due to the fact
that training data contained lip smacks, breath sounds, etc, noises
ressembling these were often passed unsuppressed into the speech
estimate. We are currently investigating whether these artifacts can
be controlled by alternative parameterizations of the model.

5. CONCLUSIONS

We presented a novel non-negative dynamical system called NDS
to model sequences of non-negative data, explained its relationships
with previous work, derived an efficient MAP estimation algorithm,
and explained how it can be applied to speech and audio modeling.
In preliminary experiments on a speech enhancement task with real
environmental sounds, the proposed NDS algorithm reached sim-
ilar performance in terms of PESQ scores compared to the state-
of-the-art algorithm, and significantly outperformed the state of the
art in terms of SDR. Future works include testing more thoroughly
the potential of the proposed model on non-negative data of differ-
ent modalities, developing extensions enabling the sharing of bases
across states, and investigating usage of NDS as a noise model.
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